



### STIM320 Inertia Measurement Unit

#### 1 FEATURES

0

0

- Miniature package
- o Low noise
- Low bias instability
- o Excellent performance in vibration and shock environments
- o 6 axes offered in same package
  - Electronically calibrated axis alignment
  - Gyros based on Sensonor ButterflyGyro™
    - o Single-crystal silicon technology
    - No intrinsic wear-out effects
  - High stability accelerometers
- PPS input
- o Output-signal with programmable timing (CRS)
- o Insensitive to magnetic fields
- Full EMI compliance
- Digital interface, RS422
- Fully configurable
- Continuous self-diagnostics
- RoHS compatible

#### 2 GENERAL DESCRIPTION

STIM320 is an IMU consisting of 3 high accuracy MEMSbased gyros and 3 high stability accelerometers in a miniature package. Each axis is factory-calibrated for bias, scale-factor and compensated for temperature effects to provide high-accuracy measurements in the temperature range -40°C to +85°C. The unit runs off a single +5V supply.

STIM320 communicates via a standard high-level RS422 interface. The use of a 32-bit RISC ARM microcontroller provides flexibility in the configuration, like choice of output unit, sample rate, low pass filter –3dB frequency and RS422 bit-rate and protocol parameters. All configurable parameters can be defined when ordering or set by customer.

When STIM320 is powered up, it will perform an internal system check and synchronize the sensor channels. As



(38.6mm x 44.8mm x 21.5mm)

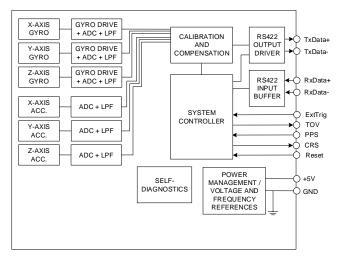



Figure 2-1: STIM320 FUNCTION BLOCK DIAGRAM

an acknowledgement of the complete power-up sequence, it will provide special datagrams containing part number, serial number, configuration and bias trim offset data. STIM320 will then automatically proceed to provide measurement data.

The measurement data is transmitted as packages of data on a fixed format (datagram) at intervals given by the sample rate together with a synchronization signal (TOV). Means for synchronization is further enhanced by a PPS input and the provision of a digital output signal with programmable timing. The datagram is in binary coded format in order to have an efficient transfer of data. In addition to the measurement data itself, the datagram contains an identifier, status bytes, sample-counter and a 32 bit CRC (Cyclic Redundancy Check) to provide high degree of fault detection in the transmissions. The status bytes will flag any detected errors in the system. STIM320 can also be configured to transmit data only when triggered by a separate digital input signal (ExtTrig).

For more advanced users, the IMU may be put in Service Mode. In this mode all the configuration parameters can be intermediately or permanently changed by overwriting the current settings in the flash memory. In Service Mode the commands and responses are in a human readable format (ASCII); to enable the use of terminal-type software during typical product integration. Service Mode also provides the ability to perform single measurements, perform diagnostics and obtain a higher detail level of detected errors reported in the status bytes.

Finally, STIM320 may be put in Utility Mode. This mode is similar to Service Mode, but made for machine-machine communication.

Sensonor AS

Phone: +47 3303 5000 sales@sensonor.com www.sensonor.com





# STIM320 Inertia Measurement Unit

#### **3 TABLE OF CONTENTS**

| DOCUMENT HISTORY                                                                                       |    |
|--------------------------------------------------------------------------------------------------------|----|
| 1 FEATURES                                                                                             |    |
| 2 GENERAL DESCRIPTION                                                                                  |    |
| 3 TABLE OF CONTENTS                                                                                    | 2  |
| 4 DEFINITIONS AND ABBREVIATIONS USED IN DOCUMENT                                                       | 4  |
| 4.1 Definitions                                                                                        | 4  |
| 4.2 Abbreviations                                                                                      | 4  |
| 5 ABSOLUTE MAXIMUM RATINGS                                                                             | 4  |
| 6 SPECIFICATIONS                                                                                       |    |
| 6.1 TYPICAL PERFORMANCE CHARACTERISTICS                                                                |    |
| 6.1.1 GYRO CHARACTERISTICS                                                                             |    |
| 6.1.2 ACCELEROMETER CHARACTERISTICS                                                                    | 14 |
| 6.1.3 PPS FILTERED CHARACTERISTICS                                                                     |    |
| 6.2 Configurable parameters                                                                            |    |
| 6.3 Datagram specifications                                                                            |    |
| 6.3.1 Part Number datagram                                                                             |    |
| 6.3.2 Serial Number datagram                                                                           |    |
| 6.3.3 Configuration datagram                                                                           |    |
|                                                                                                        |    |
| <ul> <li>6.3.4 Bias Trim Offset datagram</li> <li>6.3.5 Extended Error Information datagram</li> </ul> |    |
|                                                                                                        |    |
| <ul><li>6.3.6 Normal Mode datagram</li><li>6.3.7 Cyclic Redundancy Check (CRC)</li></ul>               |    |
| 6.3.7 Cyclic Redundancy Check (CRC)                                                                    |    |
| 6.4 Status byte                                                                                        |    |
| 7 MECHANICAL                                                                                           |    |
| 7.1 Mechanical dimensions                                                                              |    |
| 7.2 Advice on mounting orientation                                                                     |    |
| 7.3 Pin configuration                                                                                  |    |
| 7.4 Definition of axes                                                                                 |    |
| 8 BASIC OPERATION                                                                                      |    |
| 8.1 Reset                                                                                              |    |
| 8.2 External Trigger                                                                                   |    |
| 8.3 Time of Validity (TOV)                                                                             |    |
| 8.4 PPS                                                                                                |    |
| 8.4.1 Time since detection                                                                             |    |
| 8.4.2 Filtered PPS                                                                                     |    |
| 8.5 Counter and Counter Restart Signal (CRS)                                                           |    |
| 8.6 Operating modes                                                                                    |    |
| 8.6.1 Init Mode                                                                                        |    |
| 8.6.2 Normal Mode                                                                                      |    |
| 8.6.3 Service Mode                                                                                     | 44 |
| 8.6.4 Utility Mode                                                                                     | 44 |
| 8.7 Self-diagnostics                                                                                   |    |
| 9 COMMANDS IN NORMAL MODE                                                                              |    |
| 9.1 N (PART NUMBER DATAGRAM) command                                                                   | 46 |
| 9.2 I (SERIAL NUMBER DATAGRAM) command                                                                 | 46 |
| 9.3 C (CONFIGURATION DATAGRAM) command                                                                 | 47 |
| 9.4 T (BIAS TRIM OFFSET DATAGRAM) command                                                              | 47 |
| 9.5 E (EXTENDED ERROR INFORMATION DATAGRAM) command                                                    | 47 |
| 9.6 R (RESET) command                                                                                  |    |
| 9.7 SERVICEMODE command                                                                                |    |
| 9.8 UTILITYMODE command                                                                                |    |
| 10 COMMANDS IN SERVICE MODE                                                                            |    |
| 10.1 i (INFORMATION) command                                                                           |    |
| 10.2 a (SINGLE-SHOT MEASUREMENT) command                                                               |    |
| 10.3 c (DIAGNOSTIC) command                                                                            |    |
| 10.4 d (DATAGRAM FORMAT) command                                                                       |    |
| 10.5 t (TRANSMISSION PARAMETERS) command                                                               |    |
| 10.5.1 User-defined bit-rate                                                                           |    |
| 10.6 r (LINE TERMINATION) command                                                                      |    |
|                                                                                                        |    |





| 10.7             | u (OUTPUT UNIT) command                   | 66  |
|------------------|-------------------------------------------|-----|
| 10.7             | f (LP FILTER -3dB FREQUENCY) command      |     |
| 10.0             | m (SAMPLE RATE) command                   |     |
| 10.10            | g (GYRO G-COMP) command                   |     |
| 10.11            | b (BIAS TRIM OFFSET) command              |     |
| 10.12            | s (SAVE) command                          |     |
| 10.13            | x (EXIT) command                          |     |
| 10.14            | z (RESTORE TO FACTORY SETTINGS) command   |     |
| 10.15            | h (SYSTEMS CONFIGURATIONS) command        |     |
| 10.16            | ? (HELP) command                          |     |
|                  | MMANDS IN UTILITY MODE                    |     |
| 11.1             | Acknowledgement for entering Utility Mode |     |
| 11.2             | Command protocol for Utility Mode         | 88  |
| 11.2.1           | Command string                            | 88  |
| 11.2.2           | Response string                           | 88  |
| 11.2.3           | Checksum                                  | 88  |
| 11.2.4           | Command status codes                      | 89  |
| 11.3             | General commands                          | 91  |
| 11.3.1           | \$isn                                     | 91  |
| 11.3.2           |                                           |     |
| 11.3.3           | T                                         |     |
| 11.3.4           | •                                         |     |
| 11.3.5           |                                           |     |
| 11.3.6           |                                           |     |
| 11.3.7           |                                           |     |
| 11.3.8           |                                           |     |
| 11.3.9           |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.1           | ·                                         |     |
| 11.3.1           |                                           |     |
| 11.3.1<br>11.3.1 |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.1           |                                           |     |
| 11.3.2           |                                           |     |
| 11.3.2           | ·                                         |     |
| 11.3.2           |                                           | -   |
| 11.4             | Commands for reconfiguration              |     |
| 11.4.1           | 6                                         |     |
| 11.4.2           | Ssgf                                      | 100 |
| 11.4.3           | \$saf                                     | 100 |
| 11.4.4           | \$spf                                     | 101 |
| 11.4.5           | \$sd                                      | 101 |
| 11.4.6           |                                           |     |
| 11.4.7           |                                           |     |
| 11.4.8           | \$spu                                     | 103 |
| 11.4.9           |                                           |     |
| 11.4.1           |                                           |     |
| 11.5             | Commands for bias trim offset             |     |
| 11.5.1           |                                           |     |
| 11.5.2           |                                           |     |
| 11.5.3           |                                           |     |
| 11.5.4           |                                           |     |
| 11.5.5           | ·                                         |     |
|                  |                                           |     |
| 13 COI           | NFIGURATION / ORDERING INFORMATION        | 108 |



DATASHEET



STIM320 Inertia Measurement Unit

#### 4 DEFINITIONS AND ABBREVIATIONS USED IN DOCUMENT

#### 4.1 Definitions

g<sub>0</sub>= 9.80665m/s<sup>2</sup> (standard gravity)

#### 4.2 Abbreviations

| Table 4-1: Abbrevi | ations                              |
|--------------------|-------------------------------------|
| ABBREVIATION       | FULL NAME                           |
| BCD                | Binary Coded Decimal                |
| BSL                | Best Straight Line                  |
| BTO                | Bias Trim Offset                    |
| CIC-filter         | Cascaded Integrator-Comb filter     |
| CR                 | Carriage Return                     |
| CRC                | Cyclic Redundancy Check             |
| CRS                | Counter Restart Signal              |
| ESD                | Electro-Static Discharge            |
| ExtTrig            | External Trigger                    |
| GND                | Ground                              |
| IMU                | Inertial Measurement Unit           |
| LF                 | Line Feed                           |
| LP filter          | Low-Pass filter                     |
| MEMS               | Micro Electro Mechanical Structure  |
| NRST               | Negative (active) Reset             |
| PPS                | Pulse Per Second                    |
| rms                | root mean square                    |
| RxD                | Receive Data                        |
| TOV                | Time of Validity                    |
| TxD                | Transmit Data                       |
| VRC                | Vibration Rectification Coefficient |
| VSUP               | Voltage supply                      |

#### 5 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed in Table 5-1 may cause permanent damage to the device.

Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

| Parameter            | Rating                 | Comment                                          |
|----------------------|------------------------|--------------------------------------------------|
| Mechanical shock     | 1 500g/0.5ms half-sine | Any direction. Ref: MIL STD-883G                 |
| ESD human body model | ±2kV                   | Ref: JEDEC/ESDA JS-001                           |
| Storage temperature  | -55°C to +90°C         | Up to 1000 hours                                 |
| VSUP to GND          | -0.5 to +7V            |                                                  |
| RxD+ or RxD- to GND  | -0.3V to +7V           |                                                  |
| RxD+ to RxD-         | ±6V                    | with $120\Omega$ Line Termination = ON           |
| TxD+ or TxD- to GND  | -8V to +8V             |                                                  |
| ExtTrig to GND       | -0.3V to +7V           |                                                  |
| PPS to GND           | -0.3V to +7V           |                                                  |
| TOV to GND           | -0.3V to +7V           |                                                  |
| CRS to GND           | -0.3V to +7V           |                                                  |
| NRST to GND          | -0.3V to +7V           |                                                  |
| Chassis to GND       | 500VDC                 |                                                  |
| Helium sensitivity   |                        | Not to be exposed to helium concentrations other |
|                      |                        | than those normally found in the atmosphere at   |
|                      |                        | Earth's surface (~5ppm)                          |





### STIM320 Inertia Measurement Unit

#### **6** SPECIFICATIONS

#### **Table 6-1: Operating conditions**

| Parameter                 | Conditions | Min | Nom  | Max | Unit | Note |
|---------------------------|------------|-----|------|-----|------|------|
| INPUT RANGE, ANGULAR RATE |            |     | ±400 |     | °/s  |      |
| INPUT RANGE, ACCELERATION |            |     | ±10  |     | g    | 1    |
| POWER SUPPLY, VSUP        |            | 4.5 | 5.0  | 5.5 | V    | 2,3  |
| OPERATING TEMPERATURE     |            | -40 |      | +85 | °C   |      |

Note 1: Other ranges possible: 5g, 30g and 80g

Note 2: At supply voltages above 5.85V (nominal value) an internal voltage protection circuit will cut power and the unit will go into reset until the voltage is back within operating conditions.

Note 3: At supply voltages below 4.05V (nominal value) the unit will go into reset until the voltage is back within operating conditions. Due to power consumption being much lower in reset compared to normal operation, the series resistance between power source and STIM320 could give rise to an oscillating behavior of the input voltage to the unit.

#### Table 6-2: Functional specifications, general

| Table 6-2: Functional specifications |                        | Mire | Nom            | Max  | 11        | Nata |
|--------------------------------------|------------------------|------|----------------|------|-----------|------|
| Parameter                            | Conditions             | Min  | Nom            | Max  | Unit      | Note |
| POWER CONSUMPTION                    |                        |      | 4.0            |      |           |      |
| Power consumption                    |                        |      | 1.8            | 2.5  | W         |      |
| TIMING                               |                        |      |                |      |           |      |
| Start-Up time after Power-On         |                        |      |                | 0.3  | S         | 1    |
| Time to transmit after Reset         |                        |      |                | 0.2  | S         | 2    |
| Time to valid data                   |                        |      | 3.5            |      | S         | 3    |
|                                      | T=+25°C                |      |                | 5    | S         | 3    |
| RS422 Bit-Rate                       |                        |      | ref. Table 6-7 |      |           |      |
| RS422 Bit-Rate Accuracy              |                        |      |                | ±1   | %         | 4    |
| Output Sample Rate                   |                        | 125  |                | 2000 | samples/s | 5    |
| RS422 PROTOCOL                       |                        |      |                |      |           |      |
| Start Bit                            |                        |      | 1              |      | bit       |      |
| Data Length                          |                        |      | 8              |      | bits      |      |
| Parity                               |                        |      | None           |      |           | 6    |
| Stop Bits                            |                        |      | 1              |      | bit       | 6    |
| <b>RS422 LINE TERMINATION</b>        |                        |      |                |      |           |      |
| Input resistance                     | Line termination = ON  |      | 120            |      | Ω         |      |
| Input resistance                     | Line termination = OFF | 48   | 125            |      | kΩ        |      |
| RESET (NRST PIN)                     |                        |      |                |      |           |      |
| Logic levels                         | "high"                 | 2.3  |                |      | V         |      |
|                                      | "low"                  |      |                | 0.6  | V         |      |
| Minimum hold time for reset          |                        | 1    |                |      | μs        |      |
| Pull-Up Resistor                     |                        | 80   | 100            |      | kΩ        |      |
| EXTERNAL TRIGGER (ExtTrig            |                        |      |                |      |           |      |
| PIN)                                 |                        |      |                |      |           |      |
| Logic levels                         | "high"                 | 2.3  |                |      | V         |      |
|                                      | "low"                  |      |                | 0.6  | V         |      |
| Trigger                              |                        | Ne   | gative transit | ion  |           |      |
| Time between triggers                | Measurement unit:      |      |                |      |           |      |
|                                      | angular rate           | 0.5  |                | 127  | ms        | 7,8  |
|                                      | incremental angle      | 0.5  |                | 127  | ms        | 7,9  |
|                                      | average rate           | 0.5  |                | 65   | ms        | 7,10 |
|                                      | integrated angle       | 0.5  |                | 8    | ms        | 7,11 |
| Minimum "high" time before trigger,  |                        | 250  |                |      | ns        | 12   |
| t <sub>ext_hi</sub>                  |                        |      |                |      |           |      |
| Minimum "low" time after trigger,    |                        | 250  |                |      | ns        | 12   |
| t <sub>ext_lo</sub>                  |                        |      |                |      |           |      |
| Delay from external trigger to start |                        |      |                | 00   |           | 10   |
| of transmission, t <sub>ext_dl</sub> |                        |      |                | 86   | μs        | 12   |
| Pull-Up Resistor                     |                        | 40   | 50             |      | kΩ        |      |
| Latency                              |                        |      |                | 1000 | μs        |      |





### STIM320 Inertia Measurement Unit

| Parameter                                 | Conditions               | Min      | Nom              | Max        | Unit | Note |
|-------------------------------------------|--------------------------|----------|------------------|------------|------|------|
| PULSE PER SECOND (PPS PIN)                |                          |          |                  |            |      |      |
| Logic levels                              | "high"                   | 2.3      |                  |            | V    |      |
|                                           | "low"                    |          |                  | 0.6        | V    |      |
| Pull-Up Resistor                          |                          | 40       | 50               |            | kΩ   |      |
| TIME OF VALIDITY (TOV PIN)                |                          |          |                  |            |      |      |
| Output configuration                      |                          | Open dra | ain with interna | al pull up |      |      |
| V <sub>OH</sub>                           | I <sub>ОН</sub> = -10µА  | 0.9 VSU  |                  |            |      |      |
|                                           | Іон = -100μА             | 0.7 VSU  | Р                |            |      |      |
| Vol                                       | $I_{OL} = 10 \text{mÅ}$  |          |                  | 0.1V       |      |      |
| TOV active level                          |                          |          | Active "low"     |            |      |      |
| Minimum time of TOV, ttov_min             |                          | 50       |                  |            | μs   | 13   |
| Delay from internal time-tick to          |                          |          | 1.2              | 6          |      | 13   |
| TOV active, t <sub>tov_dl</sub>           |                          |          | 1.2              | 0          | μs   | 15   |
| Delay from TOV active (to start of        |                          |          |                  | 80         | μs   | 13   |
| transmission, t <sub>tx_dl</sub>          |                          |          |                  | 00         | μο   | 15   |
| COUNTER RESTART SIGNAL                    |                          |          |                  |            |      |      |
| (CRS PIN)                                 |                          |          |                  |            |      |      |
| Output configuration                      |                          |          | Open drain       |            |      |      |
| Voн                                       | I <sub>ОН</sub> = -10µА  | 0.9 VSU  |                  |            |      |      |
|                                           | I <sub>ОН</sub> = -100µА | 0.7 VSU  | Р                |            |      |      |
| V <sub>OL</sub>                           | $I_{OL} = 10 \text{mA}$  |          |                  | 0.1V       |      |      |
| CRS active level                          |                          |          | Active "low"     |            |      |      |
| Minimum time of CRS, t <sub>crs_min</sub> |                          | 50       |                  |            | μs   | 14   |
| Delay from internal time-tick to          |                          |          | 1.2              | 6          | μs   | 14   |
| CRS active, t <sub>crs_dl</sub>           |                          |          |                  | U          | P.C  |      |
| CHASSIS                                   |                          |          |                  |            |      |      |
| Isolation resistance chassis to           | 500VDC                   | 100      |                  |            | MΩ   |      |
| GND (pin 15)                              |                          |          |                  |            |      |      |

Note 1: Time from Power-On to start of datagram transmissions (starting with part-number datagram)

Note 2: Time from Reset release to start of datagram transmissions (starting with part-number datagram)

Note 3: Time from Power-On or Reset to the reset of the Start-Up bit (Bit 6 in the STATUS byte ref. Table 6-18). During this period the output data should be regarded as non-valid.

Note 4: If a user-defined bit-rate larger than 1.5Mbit/s is used, the deviation may exceed the specification due to the

resolution of the bit-rate generator, ref. section 10.5.1

- Note 5: Internal sample rate is 2000 samples/s for gyro + gyro temperature and 32 samples/s for accelerometers and PPS filtered. Output sample rate can be configured, ref. Table 6-7. Output sample rate will be same for gyros, accelerometers, PPS and temperature
- Note 6: Other values can be configured, ref. Table 6-7
- Note 7: If time between triggers is longer than 127ms, the sample counter will over-run
- Note 8: Time between triggers should be carefully evaluated as long time between triggers in combination with high bandwidths could lead to issues related to folding. Similar for accelerometer outputs
- Note 9: If time between triggers is longer than 8ms, an overload may occur in the incremental angle. An overload will be flagged in the status byte, ref. Table 6-18. Similar for accelerometer output
- Note 10: If time between triggers is longer, the accuracy of average rate may also be reduced. Similar for accelerometer output
- Note 11: If time between triggers is longer, the integrated angle may have wrapped several times and hence the change in angle from last sample will not be possible to calculate. Similar for accelerometer output
- Note 12: For definition, ref. Figure 8-3
- Note 13: For definition, ref. Figure 8-4 and Figure 8-5
- Note 14: For definition, ref Figure 8-7





### STIM320 Inertia Measurement Unit

#### Table 6-3: Functional specifications, gyros

| Parameter                             | Conditions             | Min  | Nom         | Max  | Unit                    | Note |
|---------------------------------------|------------------------|------|-------------|------|-------------------------|------|
| GYRO                                  |                        |      |             |      |                         |      |
| Full Scale (FS)                       |                        |      | ±400        |      | °/s                     | 1    |
| Resolution                            |                        |      | 24          |      | bits                    |      |
|                                       |                        |      | 0.22        |      | °/h                     |      |
| Scale Factor Accuracy                 |                        |      | ±500        |      | ppm                     |      |
| Non-Linearity                         | ±200°/s                |      | 15          |      | ppm                     | 2    |
|                                       | ±400°/s                |      | 20          |      | ppm                     | 2    |
| Bandwidth (-3dB)                      |                        |      | 262         |      | Hz                      | 3    |
| Sample Rate                           |                        |      |             | 2000 | samples/s               | 4    |
| Group Delay                           | LP-filter -3dB = 262Hz |      | 2.2         |      | ms                      | 5    |
|                                       | LP-filter -3dB = 131Hz |      | 3.7         |      | ms                      | 5    |
|                                       | LP-filter -3dB = 66Hz  |      | 6.7         |      | ms                      | 5    |
|                                       | LP-filter -3dB = 33Hz  |      | 12.7        |      | ms                      | 5    |
|                                       | LP-filter -3dB = 16Hz  |      | 24.7        |      | ms                      | 5    |
| Bias Range                            |                        | -250 | 0           | +250 | °/h                     |      |
| Bias Trim offset range                |                        |      | ±1          |      | °/s                     |      |
| Bias Run-Run                          |                        |      | 4           |      | °/h                     |      |
| Drift Rate Stability                  |                        |      | 3           |      | °/h                     |      |
| Bias error over temperature           | Static temperatures    |      | 9           |      | °/h                     | 6    |
| Bias error over temperature gradients | ΔT ≤ ±1°C/min          |      | 10          |      | °/h                     | 7    |
| Bias Instability                      | Allan Variance @25°C   |      | 0.3         |      | °/h                     |      |
| Angular Random Walk                   | Allan Variance @25°C   |      | 0.10        |      | °/√h                    |      |
| Linear Acceleration Effect            |                        |      |             |      |                         |      |
| Bias                                  | With g-compensation    |      | 1           |      | °/h /g                  | 8    |
|                                       | No g-compensation      |      | 7           |      | °/h /g                  | 8    |
| Scale Factor                          | With g-compensation    |      | 50          |      | ppm/g                   | 8    |
|                                       | No g-compensation      |      | 400         |      | ppm/g                   | 8    |
| Vibration Rectification Coefficient   |                        | Re   | f. Figure 6 | 5-1  | °/h /g <sub>rms</sub> ² |      |
| Misalignment                          |                        |      | 1           |      | mrad                    | 9    |
| Orthogonality                         |                        |      | 0.2         |      | mrad                    | 10   |

Note 1: Output is monotonous and will saturate at ±480°/s

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified

Note 3: Low-pass filter -3dB frequency can be configured, ref. Table 6-7 and section 6.1.1.4

Note 4: Other values can be configured, ref. Table 6-7. Sample rate will be same for gyros, accelerometers, PPS and temperature

Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + t<sub>tov\_dl</sub> + t<sub>tx\_dl</sub>. For output units with delayed output, the group delay will be 1.0ms longer, ref. section 8.6.2.2.1. For more details, see TS1631 Application Note "Timing details between sampling and datagram transmission"

Note 6: rms-value calculated on the residuals at static temperatures over the temperature range

Note 7: rms-value calculated on the residual over two temperature-cycles, ref. Figure 6-5

Note 8: Section 7.2 gives advice on sensitive directions

Note 9: Ref. Figure 7-5 for definition of reference points used in axis alignment

Note 10: Gyros and accelerometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems



ButterflyGyro<sup>™</sup>

STIM320 Inertia Measurement Unit

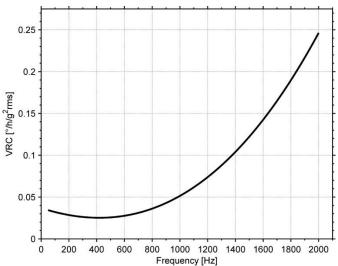



Figure 6-1: Nominal VRC at 20g rms for gyros (ref. section 7.2 for sensitive directions to acceleration-forces)

| Table 6-4: Functional specifications, 10g accelerometers | Table 6-4: Functional | specifications, 1 | 0g accelerometers |
|----------------------------------------------------------|-----------------------|-------------------|-------------------|
|----------------------------------------------------------|-----------------------|-------------------|-------------------|

| Parameter                           | Conditions             | Min  | Nom          | Max | Unit                            | Note |
|-------------------------------------|------------------------|------|--------------|-----|---------------------------------|------|
| ACCELEROMETER                       |                        |      |              |     |                                 |      |
| Full Scale (FS)                     |                        |      | ±10          |     | g                               | 1    |
| Resolution                          |                        |      | 24           |     | bits                            |      |
|                                     |                        |      | 1.9          |     | μg                              |      |
| Scale Factor Accuracy               |                        |      | ±200         |     | ppm                             |      |
| Scale Factor 1 year stability       |                        |      | 600          |     | ppm                             |      |
| Non-Linearity                       | ±10g                   |      | 100          |     | ppm                             | 2    |
| Bandwidth (-3dB)                    | LP-filter -3dB = 262Hz |      | 225          |     | Hz                              | 3    |
| Group Delay                         | LP-filter -3dB = 262Hz |      | 3.0          |     | ms                              | 4    |
|                                     | LP-filter -3dB = 131Hz |      | 4.5          |     | ms                              | 4    |
|                                     | LP-filter -3dB = 66Hz  |      | 7.5          |     | ms                              | 4    |
|                                     | LP-filter -3dB = 33Hz  |      | 13           |     | ms                              | 4    |
|                                     | LP-filter -3dB = 16Hz  |      | 25           |     | ms                              | 4    |
| Bias 1 year stability, STIM320      |                        | 1.25 | 1.5          |     | mg                              |      |
| Bias 1 year stability, STIM320e     |                        |      | 1.2          |     | mg                              | 5    |
| Bias Trim offset range              |                        |      | ±100         |     | mg                              |      |
| Bias error over temperature         | ΔT ≤ ±1°C/min          |      | ±0.7         |     | mg rms                          |      |
| Bias Instability                    | Allan Variance @25°C   |      | 0.003        |     | mg                              |      |
| Velocity Random Walk                | Allan Variance @25°C   |      | 0.015        |     | m/s/√h                          |      |
| Vibration Rectification Coefficient |                        | R    | ef. Figure 6 | -2  | mg/g <sub>rms<sup>2</sup></sub> |      |
| Misalignment                        |                        |      | 1            |     | mrad                            | 6    |
| Orthogonality                       |                        |      | 0.2          |     | mrad                            | 7    |

Note 1: Overload-bit in STATUS-byte (ref. section 6.4) will be set at 11g (+10% of range)

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified

Note 3: Other values can be configured, ref. Table 6-7 and section 6.1.2.3

Note 4: Total delay to start of datagram transmission = group delay +  $0.5ms + t_{tov_{dl}} + t_{tx_{dl}}$ . For more details, see TS1631 Application Note "Timing details between sampling and datagram transmission"

Note 5: STIM320e will require export-license

Note 6: Ref. Figure 7-5 for definition of reference points used in axis alignment

Note 7: Gyros and accelerometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems





### STIM320 Inertia Measurement Unit

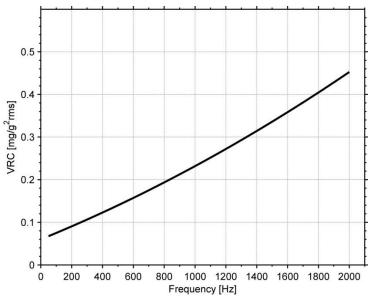



Figure 6-2: Nominal VRC at 10g rms for 10g accelerometers

#### Table 6-5: Functional specifications, PPS input

| Parameter                        | Conditions             | Min | Nom | Max  | Unit | Note |
|----------------------------------|------------------------|-----|-----|------|------|------|
| Time since detection, resolution |                        |     | 1   |      | μs   |      |
| Time since detection             |                        |     |     | 8388 | ms   |      |
| PPS filtered, bandwidth (-3dB)   |                        |     | 262 |      | Hz   | 1    |
| PPS filtered, Group Delay        | LP filter -3dB = 262Hz |     | 1.4 |      | ms   | 2    |
|                                  | LP filter -3dB = 131Hz |     | 2.9 |      | ms   | 2    |
|                                  | LP filter -3dB = 66Hz  |     | 5.9 |      | ms   | 2    |
|                                  | LP filter -3dB = 33Hz  |     | 12  |      | ms   | 2    |
|                                  | LP filter -3dB = 16Hz  |     | 24  |      | ms   | 2    |

Note 1: Other values can be configured, ref. Table 6-7 and section 6.1.3.1

Note 2: Total delay to start of datagram transmission = group delay + 0.5ms + ttov\_dl + ttx\_dl

#### Table 6-6: Functional specifications, temperature

| Parameter             | Conditions | Min | Nom    | Max | Unit | Note |
|-----------------------|------------|-----|--------|-----|------|------|
| Resolution            |            |     | 0.0039 |     | °C   |      |
| Bias Accuracy         | @25°C      |     | ±5     |     | °C   | 1    |
| Scale factor accuracy |            |     | ±5     |     | %    |      |

Note 1: Temperature measured at gyros. Temperature calibrated at static condition and referred to ambient temperature





STIM320 Inertia Measurement Unit

#### 6.1 TYPICAL PERFORMANCE CHARACTERISTICS

#### 6.1.1 GYRO CHARACTERISTICS

#### 6.1.1.1 Root Allan Variance of gyro

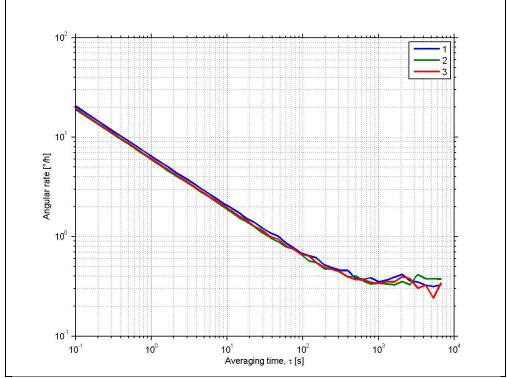
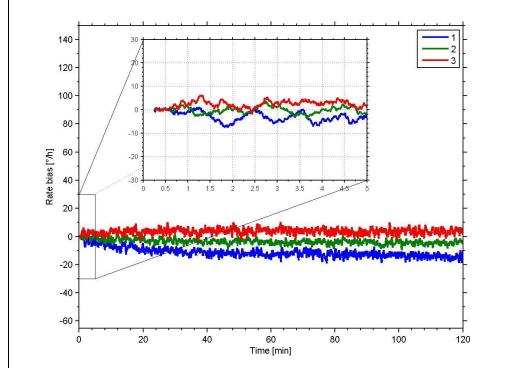




Figure 6-3: Typical Root Allan-Variance of gyro (400°/s gyro)



#### 6.1.1.2 Initial bias drift of gyro

Figure 6-4: Typical normalized initial bias drift of gyro (400°/s gyro)





STIM320 Inertia Measurement Unit

#### 6.1.1.3 Bias drift over temperature

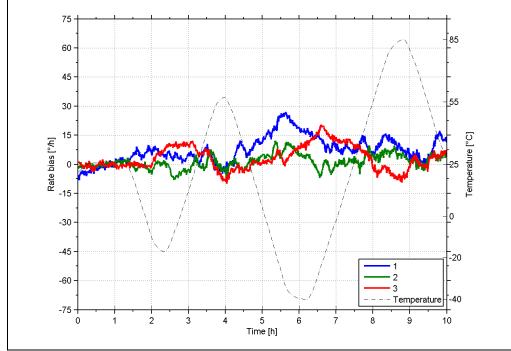



Figure 6-5: Typical Bias drift over temperature (400°/s gyro)





### STIM320 Inertia Measurement Unit

#### 6.1.1.4 Frequency characteristics of gyros

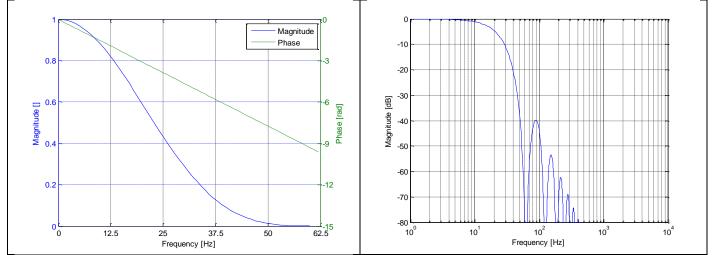



Figure 6-6: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 16Hz

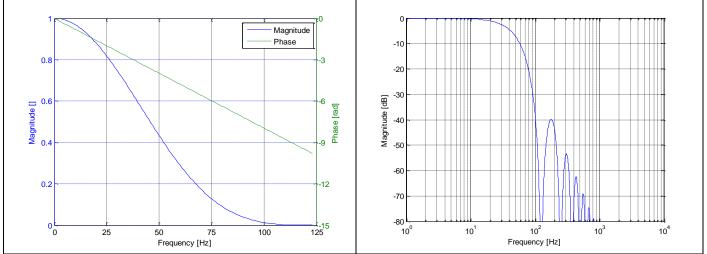



Figure 6-7: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 33Hz

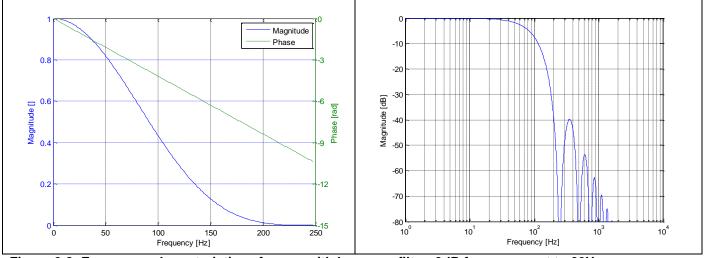



Figure 6-8: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 66Hz



# ButterflyGyro<sup>™</sup>

STIM320 Inertia Measurement Unit

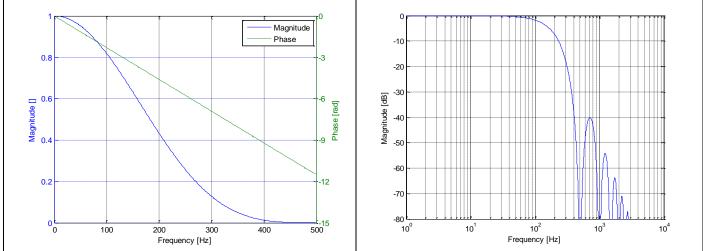



Figure 6-9: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 131Hz

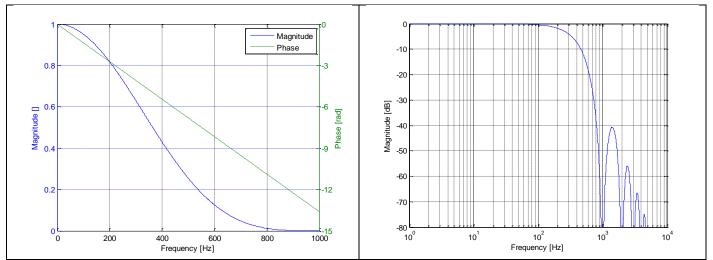



Figure 6-10: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 262Hz



DATASHEET



STIM320 Inertia Measurement Unit

#### 6.1.2 ACCELEROMETER CHARACTERISTICS



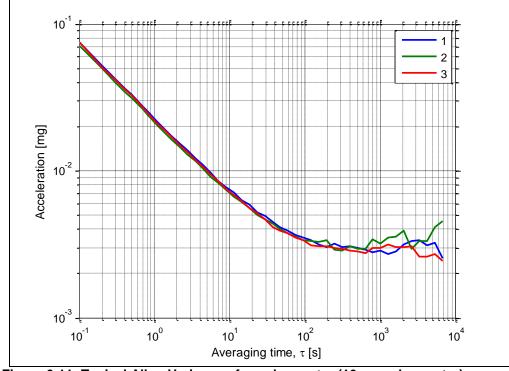
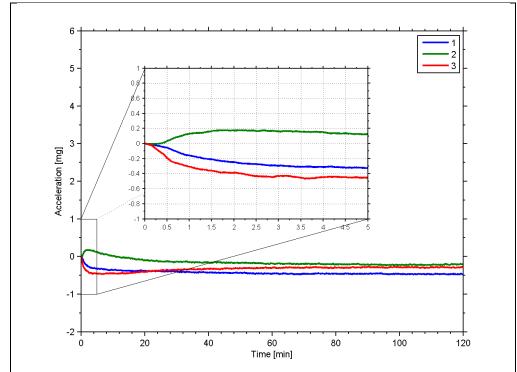




Figure 6-11: Typical Allan-Variance of accelerometer (10g accelerometer)



6.1.2.2 Initial bias drift of accelerometer

Figure 6-12: Typical normalized initial bias drift of accelerometer (10g accelerometer)





### STIM320 Inertia Measurement Unit



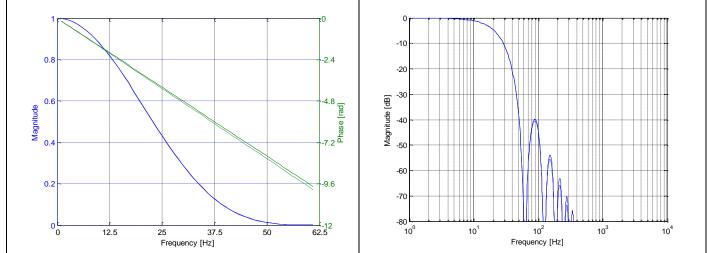



Figure 6-13: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 16Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

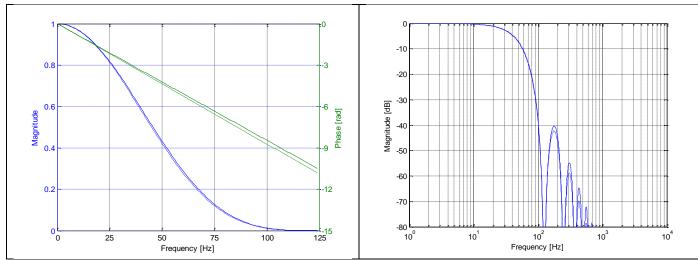



Figure 6-14: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 33Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

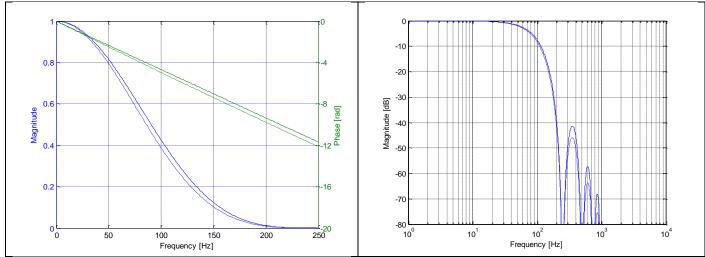



Figure 6-15: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 66Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)



# ButterflyGyro<sup>™</sup>

STIM320 Inertia Measurement Unit



Figure 6-16: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 131Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

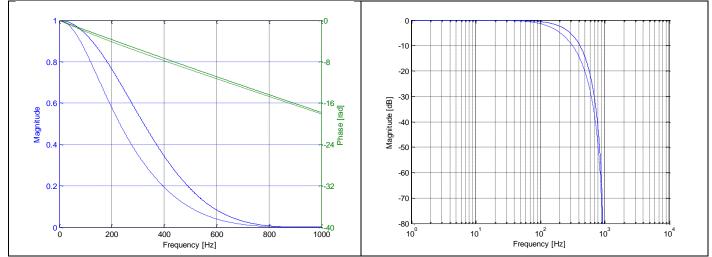



Figure 6-17: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 262Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)





### STIM320 Inertia Measurement Unit

#### 6.1.3 PPS FILTERED CHARACTERISTICS

#### 6.1.3.1 Frequency characteristics of PPS filtered

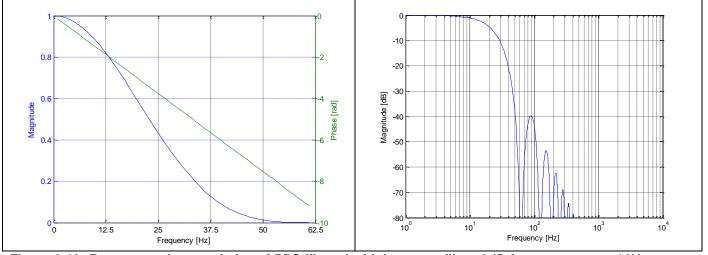



Figure 6-18: Frequency characteristics of PPS filtered with low-pass filter -3dB frequency set to 16Hz

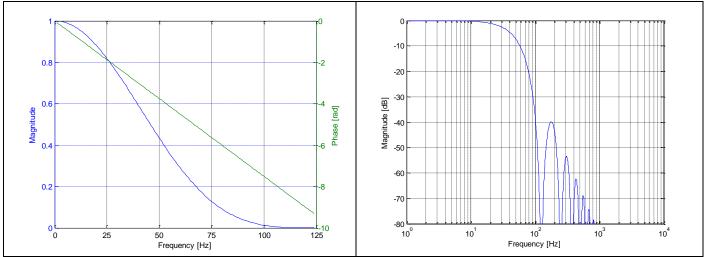



Figure 6-19: Frequency characteristics of PPS filtered with low-pass filter -3dB frequency set to 33Hz

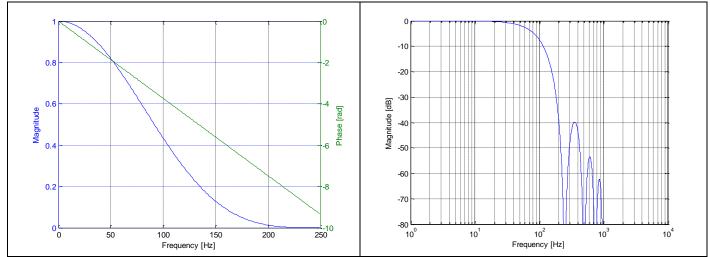



Figure 6-20: Frequency characteristics of PPS filtered with low-pass filter -3dB frequency set to 66Hz



# ButterflyGyro<sup>™</sup>

STIM320 Inertia Measurement Unit

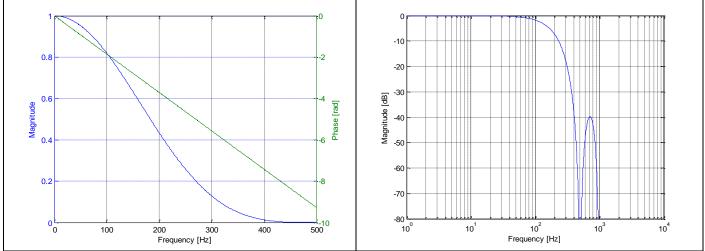



Figure 6-21: Frequency characteristics of PPS filtered with low-pass filter -3dB frequency set to 131Hz

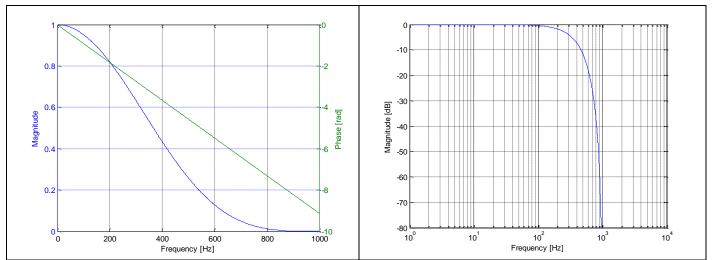



Figure 6-22: Frequency characteristics of PPS filtered with low-pass filter -3dB frequency set to 262Hz





### STIM320 Inertia Measurement Unit

#### 6.2 Configurable parameters

Table 6-7: Configurable parameters

| Parameter             | Configurations                  | Comments                                          |
|-----------------------|---------------------------------|---------------------------------------------------|
| SAMPLE RATE           | 125 samples/s                   | Some limitations apply to the use of higher       |
|                       | 250 samples/s                   | sample rates (>500 samples/s), dependent on       |
|                       | 500 samples/s                   | selected bit-rate and datagram content, ref.      |
|                       | 1000 samples/s                  | Table 6-8                                         |
|                       | 2000 samples/s                  |                                                   |
|                       | External trigger                |                                                   |
| LOW-PASS FILTER -3dB  | 16Hz                            | Filter settings are independent of sample rate.   |
| FREQUENCY             | 33Hz                            | Low-pass filters are CIC type filters with linear |
|                       | 66Hz                            | phase response.                                   |
|                       | 131Hz                           | Filter settings can be set individually for each  |
|                       | 262Hz                           | axis.                                             |
| MEASUREMENT UNIT GYRO | Angular rate [°/s]              |                                                   |
|                       | Incremental angle [°/sample]    |                                                   |
|                       | Average angular rate [°/s]      |                                                   |
|                       | Integrated angle [°]            |                                                   |
| MEASUREMENT UNIT      | Acceleration [g]                |                                                   |
| ACCELEROMETER         | Incremental velocity            |                                                   |
|                       | [m/s/sample]                    |                                                   |
|                       | Average acceleration [g]        |                                                   |
|                       | Integrated velocity [m/s]       |                                                   |
| DATAGRAM              | Rate together with any          |                                                   |
|                       | combination of acceleration and |                                                   |
|                       | temperature                     |                                                   |
| DATAGRAM TERMINATION  | NONE                            |                                                   |
|                       | <cr><lf></lf></cr>              |                                                   |
| RS422 BIT-RATE        | 374400 bits/s                   | Some limitations apply to the use of lower bit-   |
|                       | 460800 bits/s                   | rates (< 1843200 bits/s) dependent on sample      |
|                       | 921600 bits/s                   | rate and datagram content, ref. Table 6-8.        |
|                       | 1843200 bits/s                  |                                                   |
|                       | User-defined                    | For user-defined bit-rates, see section 10.5      |
| RS422 PARITY          | None                            |                                                   |
|                       | Odd                             |                                                   |
|                       | Even                            |                                                   |
| RS422 STOP BITS       | 1 stop bit                      |                                                   |
|                       | 2 stop bits                     |                                                   |
| RS422 120Ω LINE       | OFF                             |                                                   |
| TERMINATION           | ON                              |                                                   |

Refer to section 13 for information on how to configure STIM320 when ordering and to section 10 for information on how to reconfigure the unit in Service Mode.

Some datagrams are longer than the time between each sample at the lower bit-rate. Table 6-8 shows the maximum sample rates.





### STIM320 Inertia Measurement Unit

#### Table 6-8: Maximum sample rate

| Datagram content                        | Counter | Number of<br>transmitted<br>bytes <sup>Note 1</sup> | 374400<br>bits/s <sup>Note 2</sup> | 460800<br>bits/s <sup>Note 2</sup> | 921600<br>bits/s <sup>Note 2</sup> | 1843200<br>bits/s <sup>Note 2</sup> |
|-----------------------------------------|---------|-----------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|
| Rate                                    | 1 byte  | 18                                                  | 1000                               | 2000                               | 2000                               | 2000                                |
| Rate and acceleration                   | 1 byte  | 28                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate and temperature                    | 1 byte  | 25                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate, acceleration and temperature      | 1 byte  | 42                                                  | 500                                | 500                                | 1000                               | 2000                                |
| Rate                                    | 2 bytes | 19                                                  | 1000                               | 2000                               | 2000                               | 2000                                |
| Rate and acceleration                   | 2 bytes | 29                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate and temperature                    | 2 bytes | 26                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate, acceleration and temperature      | 2 bytes | 43                                                  | 500                                | 500                                | 1000                               | 2000                                |
| Rate and PPS                            | 2 bytes | 23                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate, acceleration and PPS              | 2 bytes | 33                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate, temperature and PPS               | 2 bytes | 30                                                  | 1000                               | 1000                               | 2000                               | 2000                                |
| Rate, acceleration, temperature and PPS | 2 bytes | 47                                                  | 500                                | 500                                | 1000                               | 2000                                |

Note 1: excluding <CR><LF> termination

Note 2: 10 bits/byte (=1 start bit, 8 data bits, no parity bit, 1 stop bit)

#### 6.3 Datagram specifications

#### 6.3.1 Part Number datagram

#### Table 6-9: Specification of the Part Number datagram

| Byte# |                       |                       |                 | Bi               | it#                   |                 |                 |                  | Specification                                                        |  |  |
|-------|-----------------------|-----------------------|-----------------|------------------|-----------------------|-----------------|-----------------|------------------|----------------------------------------------------------------------|--|--|
| _,    | 7                     | 6                     | 5               | 4                | 3                     | 2               | 1               | 0                |                                                                      |  |  |
|       |                       |                       |                 |                  |                       |                 |                 |                  | Part Number datagram identifier:                                     |  |  |
| 0     | 1                     | 0                     | 1               | 1                | 0                     | 0               | 0               | 1                | 0xB1 for datagrams without CR+LF termination                         |  |  |
|       | 1                     | 0                     | 1               | 1                | 0                     | 0               | 1               | 1                | 0xB3 for datagrams with CR+LF termination                            |  |  |
| 1     | 0                     | 0                     | 0               | 0                | P1 <sub>3</sub>       | P1 <sub>2</sub> | P1 <sub>1</sub> | P1 <sub>0</sub>  | Low nibble: 1.digit of part number                                   |  |  |
| 2     | P2 <sub>3</sub>       | 50                    | P21             | P20              | P33                   | P3 <sub>2</sub> | P3₁             | P3 <sub>0</sub>  | High nibble: 2.digit of part number                                  |  |  |
| 2     | PZ3                   | P2 <sub>2</sub>       | PZ1             | PZ0              | ۳33                   | P32             | P31             | P30              | Low nibble: 3.digit of part number                                   |  |  |
| 3     | P43                   | P4 <sub>2</sub>       | P4 <sub>1</sub> | P40              | P53                   | P5 <sub>2</sub> | P5₁             | P50              | High nibble: 4.digit of part number                                  |  |  |
| 5     | F 443                 | г <b>4</b> 2          | г41             | г 40             | гJ3                   | гJ <sub>2</sub> | гJ              | гJ <sub>0</sub>  | Low nibble: 5.digit of part number                                   |  |  |
| 4     | 0                     | 0                     | 1               | 0                | 1                     | 1               | 0               | 1                | ASCII character "-" (0x2D)                                           |  |  |
| 5     | P63                   | P6 <sub>2</sub>       | P6₁             | P60              | P73                   | P72             | P7₁             | P70              | High nibble: 6.digit of part number                                  |  |  |
| 5     | 103                   | 102                   | 101             | 100              | 173                   | 172             | 11              | 170              | Low nibble: 7.digit of part number                                   |  |  |
| 6     | P83                   | P8 <sub>2</sub>       | P8₁             | P8₀              | P93                   | P9 <sub>2</sub> | P9₁             | P90              | High nibble: 8.digit of part number                                  |  |  |
| 0     | 103                   | 102                   | 101             | 100              | 1 03                  | 1 52            | 1 31            | 1.50             | Low nibble: 9.digit of part number                                   |  |  |
| 7     | P10.                  | P10.                  | P10.            | P10              | P11。                  | P11。            | P11.            | P11 <sub>0</sub> | High nibble: 10.digit of part number                                 |  |  |
|       |                       |                       |                 | -                | 1 1 13                |                 |                 |                  | Low hibble: 11.digit of part number                                  |  |  |
| 8     | 0                     | 0                     | 1               | 0                | 1                     | 1               | 0               | (+)              |                                                                      |  |  |
| 9     | P12                   | P12                   | P12             | P12              | P13                   | P13             | P13             | P130             | High nibble: 12.digit of part number                                 |  |  |
| Ŭ     | 1 123                 | 1 122                 | 1 121           | 1 120            | 1 103                 | 1 102           | 1 101           | 1 100            | Low hibble. To digit of part humber                                  |  |  |
| 10    | P14                   | P14                   | P14             | P14 <sub>0</sub> | х                     | х               | х               | х                | High nibble: 14.digit of part number                                 |  |  |
|       |                       |                       |                 |                  |                       |                 |                 |                  |                                                                      |  |  |
| 11    | Х                     | Х                     | Х               | Х                | Х                     | Х               | Х               | Х                | For future use                                                       |  |  |
| 12    | Х                     | Х                     | Х               | Х                | Х                     | Х               | Х               | Х                | For future use                                                       |  |  |
| 13    | Х                     | Х                     | Х               | Х                | Х                     | Х               | Х               | Х                | For future use                                                       |  |  |
| 14    | Х                     | Х                     | Х               | Х                | Х                     | Х               | Х               | Х                | For future use                                                       |  |  |
| 15    | r <sub>7</sub>        | r <sub>6</sub>        | r <sub>5</sub>  | r₄               | r <sub>3</sub>        | r <sub>2</sub>  | r <sub>1</sub>  | r <sub>o</sub>   | Part number revision. Content of byte represents the ASCII-character |  |  |
|       | ''                    | 10                    | 15              | 14               | 13                    | 12              | 1               | 10               | of the revision. Numbering sequence: "-", "A", "B",, "Z"             |  |  |
| 16    | C <sub>31</sub>       | C <sub>30</sub>       | C <sub>29</sub> | C <sub>28</sub>  | C <sub>27</sub>       | C <sub>26</sub> | C <sub>25</sub> | C <sub>24</sub>  |                                                                      |  |  |
| 17    | C <sub>23</sub>       | C <sub>22</sub>       | C <sub>21</sub> | C <sub>20</sub>  | C <sub>19</sub>       | C <sub>18</sub> | C <sub>17</sub> |                  |                                                                      |  |  |
| 18    | C <sub>15</sub>       | C <sub>14</sub>       | C <sub>13</sub> | C <sub>12</sub>  | C <sub>11</sub>       | C <sub>10</sub> | <b>C</b> 9      |                  |                                                                      |  |  |
| 19    | <b>C</b> <sub>7</sub> | <b>C</b> <sub>6</sub> | <b>C</b> 5      | <b>C</b> 4       | <b>C</b> <sub>3</sub> | C2              | C1              | <b>C</b> 0       |                                                                      |  |  |
| (20)  | 0                     | 0                     | 0               | 0                | 1                     | 1               | 0               | 1                |                                                                      |  |  |
| (21)  | 0                     | 0                     | 0               | 0                | 1                     | 0               | 1               | 0                | <lf> If datagram termination has been selected</lf>                  |  |  |





### STIM320 Inertia Measurement Unit

#### 6.3.2 Serial Number datagram

#### Table 6-10: Specification of the Serial Number datagram

| Byte#    |                                   |                  |                 |                  | it#              |                  |                                  |                                                       | Specification                                                    |  |  |
|----------|-----------------------------------|------------------|-----------------|------------------|------------------|------------------|----------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--|--|
| -        | 7                                 | 6                | 5               | 4                | 3                | 2                | 1                                | 0                                                     | •                                                                |  |  |
|          |                                   |                  |                 |                  |                  |                  |                                  |                                                       | Serial Number datagram identifier:                               |  |  |
| 0        | 1                                 | 0                | 1               | 1                | 0                | 1                | 0                                | 1                                                     | 0xB5 for datagrams without CR+LF termination                     |  |  |
|          | 1                                 | 0                | 1               | 1                | 0                | 1                | 1                                | 1                                                     | 0xB7 for datagrams with CR+LF termination                        |  |  |
| 1        | 0                                 | 1                | 0               | 0                | 1                | 1                | 1                                | 0                                                     | ASCII-character for letter "N"                                   |  |  |
| 2        | S1 <sub>3</sub>                   | S12              | S1₁             | S10              | S2 <sub>3</sub>  | S22              | S21                              | S20                                                   | High nibble: 1.digit (BCD) of serial number                      |  |  |
| 2        | 313                               | 512              | 311             | 310              | 323              | 322              | 321                              | 320                                                   | Low nibble: 2.digit (BCD) of serial number                       |  |  |
| 3        | S33                               | S3 <sub>2</sub>  | S3₁             | S30              | S43              | S4 <sub>2</sub>  | S4₁                              | S40                                                   | High nibble: 3.digit (BCD) of serial number                      |  |  |
| 5        | 003                               | 002              | 001             | 000              | 0-3              | 0-12             | 0-1                              | 0-0                                                   | Low nibble: 4.digit (BCD) of serial number                       |  |  |
| 4        | S53                               | S52              | S5₁             | S50              | S63              | S62              | S6₁                              | S60                                                   | High nibble: 5.digit (BCD) of serial number                      |  |  |
| -        | 003                               | 002              | 001             | 000              | 003              | 002              | 001                              | 000                                                   | Low nibble: 6.digit (BCD) of serial number                       |  |  |
| 5        | S73                               | S72              | S7₁             | S7₀              | S83              | S82              | S8₁                              | S80                                                   | High nibble: 7.digit (BCD) of serial number                      |  |  |
| U        | 013                               | 0.2              | 011             | 0.0              | 003              | 002              | 001                              | 000                                                   | Low nibble: 8.digit (BCD) of serial number                       |  |  |
| 6        | S93                               | S92              | S9₁             | S90              | S10 <sub>2</sub> | S10 <sub>2</sub> | S10₁                             | S10                                                   | High nibble: 9.digit (BCD) of serial number                      |  |  |
| -        |                                   | 2                |                 |                  | 5                | 2                |                                  | 0                                                     | Low nibble: 10.digit (BCD) of serial number                      |  |  |
| 7        | S11 <sub>3</sub>                  | S11 <sub>2</sub> | S11₁            | S11 <sub>0</sub> | S11 <sub>3</sub> | S11 <sub>2</sub> | S11₁                             | S11 <sub>0</sub>                                      | High nibble: 11.digit (BCD) of serial number                     |  |  |
|          | Ű                                 | -                |                 |                  |                  | -                | · ·                              |                                                       | Low hibble. 12.digit (BCD) of senar humber                       |  |  |
| 8        | S13 <sub>3</sub>                  | S13 <sub>2</sub> | S131            | S13 <sub>0</sub> | S14 <sub>3</sub> | S14 <sub>2</sub> | S14 <sub>1</sub>                 | S14 <sub>0</sub>                                      | High nibble: 13.digit (BCD) of serial number                     |  |  |
| 0        |                                   |                  |                 |                  |                  |                  |                                  |                                                       | Low hibble. 14.digit (BCD) of serial humber                      |  |  |
| 9<br>10  | X                                 | Х                | X               | X                | X                | Х                | X                                | X                                                     | For future use For future use                                    |  |  |
|          | X                                 | X                | X               | X                | X                | X                | X                                | X                                                     |                                                                  |  |  |
| 11<br>12 | X                                 | Х                | X               | X                | X                | X                | X                                | X                                                     | For future use                                                   |  |  |
| 12       | X                                 | Х                | X               | X                | X                | X                | X                                | X                                                     | For future use                                                   |  |  |
| 13       | X                                 | X                | X               | X                | X                | X                | X                                | X                                                     | For future use                                                   |  |  |
| 14       | X                                 | X                | X               | X                | X                | X                | X                                | X<br>X                                                | For future use For future use                                    |  |  |
| 15       | x                                 | X                | X               | X                | x                | X                | x                                |                                                       |                                                                  |  |  |
| 10       | C <sub>31</sub>                   | C <sub>30</sub>  | C <sub>29</sub> | C <sub>28</sub>  | C <sub>27</sub>  | C <sub>26</sub>  | C <sub>25</sub>                  | C <sub>24</sub>                                       | Cualia Redundancy Check is performed on all preceding bytes, ref |  |  |
| 17       | C <sub>23</sub>                   | C <sub>22</sub>  | C <sub>21</sub> | C <sub>20</sub>  | C <sub>19</sub>  | C <sub>18</sub>  | C <sub>17</sub>                  |                                                       |                                                                  |  |  |
| 10       | C <sub>15</sub><br>C <sub>7</sub> | C <sub>14</sub>  | C <sub>13</sub> | C <sub>12</sub>  | C <sub>11</sub>  | C <sub>10</sub>  | C <sub>9</sub><br>C <sub>1</sub> | 5                                                     |                                                                  |  |  |
| (20)     | 0                                 | C <sub>6</sub>   | C <sub>5</sub>  | C <sub>4</sub>   | C <sub>3</sub>   | C <sub>2</sub>   | 0                                | 1 <cr> If datagram termination has been selected</cr> |                                                                  |  |  |
| (20)     | 0                                 | 0                | 0               | 0                | 1                | 0                | 1                                | 0                                                     | <ck> If datagram termination has been selected</ck>              |  |  |
| (21)     | U                                 | U                | U               | U                |                  | U                |                                  | U                                                     |                                                                  |  |  |





### STIM320 Inertia Measurement Unit

#### 6.3.3 Configuration datagram

#### Table 6-11: Specification of the Configuration datagram

|       | 0-11.          | ope            | Cinc           |                |                |                | UIII           | gura           | Specification                                                        |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------------------------------------------------------------|
| Byte# | 7              | 6              | 5              | 4              | it#<br>3       | 2              | 1              | 0              | Specification                                                        |
|       | 1              | 0              | 5              | 4              | 3              | 2              | 1              | U              | Configuration datagram identifion                                    |
| •     |                | 4              | 4              | ~              | 4              | 4              | ~              | ~              | Configuration datagram identifier:                                   |
| 0     | 1              | 1              | 1              | 0              | 1              | 1              | 0              | 0              | 0xEC for datagrams without CR+LF termination                         |
|       | 1              | 1              | 1              | 0              | 1              | 1              | 0              | 1              | 0xED for datagrams with CR+LF termination                            |
| 1     | r <sub>7</sub> | r <sub>6</sub> | <b>r</b> 5     | r <sub>4</sub> | r <sub>3</sub> | r <sub>2</sub> | r <sub>1</sub> | r <sub>o</sub> | Part number revision. Content of byte represents the ASCII-character |
|       |                | -              |                |                | -              |                |                | -              | of the revision. Numbering sequence: "-", "A", "B",, "Z"             |
| 2     | f <sub>7</sub> | f <sub>6</sub> | f <sub>5</sub> | f <sub>4</sub> | f <sub>3</sub> | f <sub>2</sub> | f <sub>1</sub> | f <sub>0</sub> | Firmware revision. Numbering sequence: 0, 1,, 255                    |
|       |                |                |                |                |                |                |                |                | System configuration, Byte 1:                                        |
|       | 0              | 0              | 0              | Х              | х              | х              | х              | Х              | Sample frequency = 125 samples/s                                     |
|       | 0              | 0              | 1              | Х              | х              | х              | х              | Х              | Sample frequency = 250 samples/s                                     |
|       | 0              | 1              | 0              | х              | х              | х              | х              | х              | Sample frequency = 500 samples/s                                     |
|       | 0              | 1              | 1              | Х              | х              | х              | х              | Х              | Sample frequency = 1000 samples/s                                    |
|       | 1              | 0              | 0              | х              | х              | х              | х              | х              | Sample frequency = 2000 samples/s                                    |
|       | 1              | 0              | 1              | Х              | х              | х              | х              | Х              | Sample frequency = External trigger                                  |
| 3     | х              | Х              | х              | Х              | 0              | х              | х              | Х              | Temperature not included in Normal Mode datagram                     |
|       | х              | Х              | х              | Х              | 1              | х              | х              | Х              | Temperature included in Normal Mode datagram                         |
|       | х              | х              | х              | х              | х              | 0              | х              | х              | PPS not included in Normal Mode datagram                             |
|       | х              | х              | х              | х              | х              | 1              | х              | х              | PPS included in Normal Mode datagram                                 |
|       | х              | х              | х              | х              | х              | х              | 0              | х              | Acceleration not included in Normal Mode datagram                    |
|       | х              | Х              | х              | Х              | х              | х              | 1              | Х              | Acceleration included in Normal Mode datagram                        |
|       | х              | Х              | х              | Х              | х              | х              | х              | 0              | No <cr><lf> termination of Normal Mode datagram</lf></cr>            |
|       | Х              | Х              | х              | Х              | х              | х              | х              | 1              | <cr><lf> termination of Normal Mode datagram</lf></cr>               |
|       |                |                |                |                |                |                |                |                | System configuration, Byte 2:                                        |
|       | 0              | 0              | 0              | 0              | х              | х              | х              | х              | Bit-rate = 374400 bits/s                                             |
|       | 0              | 0              | 0              | 1              | х              | х              | х              | х              | Bit-rate = 460800 bits/s                                             |
|       | 0              | 0              | 1              | 0              | х              | х              | х              | Х              | Bit-rate = 921600 bits/s                                             |
|       | 0              | 0              | 1              | 1              | х              | х              | х              | Х              | Bit-rate = 1843200 bits/s                                            |
|       | 1              | 1              | 1              | 1              | х              | х              | х              | х              | Bit-rate = User-defined, ref. section 10.5                           |
| 4     | х              | х              | х              | х              | 0              | х              | х              | х              | Stop bit = 1                                                         |
|       | х              | Х              | х              | х              | 1              | х              | х              | х              | Stop bits = 2                                                        |
|       | х              | Х              | х              | х              | х              | 0              | 0              | х              | Parity = none                                                        |
|       | х              | х              | х              | Х              | х              | 0              | 1              | х              | Parity = even                                                        |
|       | х              | х              | х              | х              | х              | 1              | 0              | Х              | Parity = odd                                                         |
|       | х              | х              | х              | х              | х              | Х              | х              | 0              | Line termination = OFF                                               |
|       | Х              | Х              | Х              | Х              | Х              | Х              | Х              | 1              | Line termination = ON                                                |
|       |                | -              |                |                |                |                |                |                | System configuration, Byte 3:                                        |
|       | х              | 0              | х              | Х              | х              | х              | х              | х              | Gyro X-axis is inactive                                              |
|       | х              | 1              | x              | Х              | х              | х              | х              | х              | Gyro X-axis is active                                                |
|       | х              | х              | 0              | х              | х              | Х              | х              | х              | Gyro Y-axis is inactive                                              |
|       | х              | х              | 1              | Х              | х              | Х              | х              | х              | Gyro Y-axis is active                                                |
|       | х              | х              | х              | 0              | х              | Х              | х              | х              | Gyro Z-axis is inactive                                              |
| _     | х              | х              | х              | 1              | х              | Х              | Х              | Х              | Gyro Z-axis is active                                                |
| 5     | х              | х              | х              | х              | 0              | 0              | 0              | 0              | Gyro output unit = ANGULAR RATE                                      |
|       | х              | х              | х              | х              | 0              | 0              | 0              | 1              | Gyro output unit = INCREMENTAL ANGLE                                 |
|       | х              | х              | х              | Х              | 0              | 0              | 1              | 0              | Gyro output unit = AVERAGE ANGULAR RATE                              |
|       | х              | х              | х              | х              | 0              | 0              | 1              | 1              | Gyro output unit = INTEGRATED ANGLE                                  |
|       | х              | х              | х              | Х              | 1              | 0              | 0              | 0              | Gyro output unit = ANGULAR RATE – DELAYED                            |
|       | х              | х              | х              | х              | 1              | 0              | 0              | 1              | Gyro output unit = INCREMENTAL ANGLE – DELAYED                       |
|       | х              | х              | х              | х              | 1              | 0              | 1              | 0              | Gyro output unit = AVERAGE ANGULAR RATE – DELAYED                    |
|       | Х              | Х              | Х              | Х              | 1              | 0              | 1              | 1              | Gyro output unit = INTEGRATED ANGLE – DELAYED                        |
|       |                | -              | -              | _              |                |                |                |                | System configuration, Byte 4:                                        |
|       | х              | 0              | 0              | 0              | х              | Х              | х              | х              | Gyro LP filter -3dB frequency for X-axis = 16Hz                      |
|       | х              | 0              | 0              | 1              | х              | х              | х              | х              | Gyro LP filter -3dB frequency for X-axis = 33Hz                      |
|       | х              | 0              | 1              | 0              | х              | Х              | х              | х              | Gyro LP filter -3dB frequency for X-axis = 66Hz                      |
|       | х              | 0              | 1              | 1              | х              | Х              | х              | х              | Gyro LP filter -3dB frequency for X-axis = 131Hz                     |
| 6     | х              | 1              | 0              | 0              | х              | X              | Х              | х              | Gyro LP filter -3dB frequency for X-axis = 262Hz                     |
|       | х              | х              | х              | х              | х              | 0              | 0              | 0              | Gyro LP filter -3dB frequency for Y-axis = 16Hz                      |
|       | х              | х              | х              | х              | х              | 0              | 0              | 1              | Gyro LP filter -3dB frequency for Y-axis = 33Hz                      |
|       | Х              | х              | х              | х              | х              | 0              | 1              | 0              | Gyro LP filter -3dB frequency for Y-axis = 66Hz                      |
|       |                |                |                |                |                |                | 1              | 1              | Gyro LP filter -3dB frequency for Y-axis = 131Hz                     |
|       | x<br>x         | x<br>x         | X<br>X         | X<br>X         | X<br>X         | 0              | 0              | 0              | Gyro LP filter -3dB frequency for Y-axis = 262Hz                     |





| 24       | C <sub>15</sub> | C <sub>14</sub> | C <sub>13</sub> | C <sub>12</sub> | C <sub>11</sub> | C <sub>10</sub> | <b>C</b> 9      | C <sub>8</sub>  |                                                                                                                         | 1 |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|---|
| 23       | C <sub>23</sub> | C <sub>22</sub> | C <sub>21</sub> | C <sub>20</sub> | C <sub>19</sub> | C <sub>18</sub> | C <sub>17</sub> | C <sub>16</sub> | section 6.3.7                                                                                                           |   |
| 22       | C <sub>31</sub> | C <sub>30</sub> | C <sub>29</sub> | C <sub>28</sub> | C <sub>27</sub> | C <sub>26</sub> | C <sub>25</sub> | C <sub>24</sub> | Cyclic Redundancy Check is performed on all preceding bytes, ref.                                                       |   |
| 21       | Х               | Х               | Х               | Х               | Х               | Х               | Х               | Х               | For future use                                                                                                          |   |
| 20       | х               | х               | х               | х               | х               | х               | х               | х               | For future use                                                                                                          |   |
| 19       | x               | x               | x               | x               | x               | x               | x               | x               | For future use                                                                                                          |   |
| 18       | 0               | 0               | 0               | 0               | х               | х               | x               | х               | High nibble: Accelerometer range, z-axis                                                                                |   |
|          | x               | х               | х               | х               | 0               | 0               | 0               | 0               | - 10g                                                                                                                   |   |
| 17       |                 | U               |                 |                 | ^               | ^               | ^               | ^               | Low nibble: Accelerometer range, y-axis                                                                                 |   |
|          | 0               | 0               | 0               | 0               | х               | х               | x               | х               | High nibble: Accelerometer range, x-axis<br>- 10g                                                                       |   |
| 10       | 0               | 0               | 0               | 0               | х               | х               | х               | х               | - 400°/s                                                                                                                |   |
| 16       |                 |                 |                 |                 |                 | Ť               |                 |                 | High nibble: Gyro range, z-axis                                                                                         |   |
|          | x               | х               | x               | x               | 0               | 0               | 0               | 0               | - 400°/s                                                                                                                |   |
| 15       | 0               | 0               | 0               | 0               | х               | х               | х               | х               | - 400°/s<br>Low nibble: Gyro range, y-axis                                                                              |   |
|          |                 | -               | -               | -               |                 |                 |                 |                 | High nibble: Gyro range, x-axis                                                                                         |   |
| 14       | x               | х               | х               | х               | х               | х               | х               | х               | For future use                                                                                                          |   |
|          | ^               | ^               | ^               | ^               | ^               | <u> </u>        | ^               | ^               | System configuration, Byte 12:                                                                                          |   |
| 13       | x               | х               | x               | x               | х               | х               | x               | х               | System configuration, Byte 11:<br>For future use                                                                        |   |
| L        | х               | 1               | 0               | 0               | Х               | х               | Х               | х               | PPS LP filter -3dB frequency for X-axis = 262Hz                                                                         |   |
|          | х               | 0               | 1               | 1               | х               | х               | х               | х               | PPS LP filter -3dB frequency for X-axis = 131Hz                                                                         |   |
| 12       | x               | Ő               | 1               | 0               | x               | x               | x               | x               | PPS LP filter -3dB frequency for X-axis = 66Hz                                                                          |   |
|          | x<br>x          | 0               | 0               | 1               | X<br>X          | x<br>x          | x<br>x          | X<br>X          | PPS LP filter -3dB frequency for X-axis = 16Hz<br>PPS LP filter -3dB frequency for X-axis = 33Hz                        |   |
| 1        | ~               | 0               | 0               | 0               | v               | v               | v               | v               | <b>System configuration, Byte 10:</b><br>PPS LP filter -3dB frequency for X-axis = 16Hz                                 |   |
|          | x               | х               | х               | х               | 0               | 0               | 1               | 1               | PPS output unit = FILTERED PPS - DELAYED                                                                                |   |
|          | x               | x               | x               | x               | 0               | 0               | 1               | 0               | PPS output unit = FILTERED PPS                                                                                          |   |
| 11       | x<br>x          | X<br>X          | x<br>x          | x<br>x          | 0               | 0               | 0               | 1               | PPS output unit = TIME SINCE DETECTION OF 0<br>PPS output unit = TIME SINCE DETECTION OF 1                              |   |
|          | ~               | v               | v               | v               | 0               | 0               | 0               | 0               | System configuration, Byte 9:                                                                                           |   |
|          | х               | 1               | 0               | 0               | х               | х               | х               | х               | Accelerometer LP filter -3dB frequency for Z-axis = 262Hz                                                               |   |
| 1        | х               | 0               | 1               | 1               | х               | х               | х               | х               | Accelerometer LP filter -3dB frequency for Z-axis = 131Hz                                                               |   |
| 10       | x               | 0               | 1               | 0               | x               | x               | x               | x               | Accelerometer LP filter -3dB frequency for Z-axis = 66Hz                                                                |   |
| 10       | x               | 0               | 0               | 1               | X               | x               | x               | x               | Accelerometer LP filter -3dB frequency for Z-axis = 1012                                                                |   |
|          | x               | 0               | 0               | 0               | х               | x               | x               | х               | System configuration, Byte 8:<br>Accelerometer LP filter -3dB frequency for Z-axis = 16Hz                               |   |
|          | х               | х               | х               | х               | Х               | 1               | 0               | 0               | Accelerometer LP filter -3dB frequency for Y-axis = 262Hz                                                               |   |
|          | х               | х               | х               | х               | х               | 0               | 1               | 1               | Accelerometer LP filter -3dB frequency for Y-axis = 131Hz                                                               |   |
|          | x               | x               | x               | x               | x               | 0               | 1               | 0               | Accelerometer LP filter -3dB frequency for Y-axis = 66Hz                                                                |   |
|          | x               | x               | x               | x               | x               | 0               | 0               | 1               | Accelerometer LP filter -3dB frequency for Y-axis = 33Hz                                                                |   |
| 9        | x<br>x          | 1<br>x          | 0<br>x          | 0<br>x          | X<br>X          | x<br>0          | x<br>O          | x<br>0          | Accelerometer LP filter -3dB frequency for X-axis = 262Hz<br>Accelerometer LP filter -3dB frequency for Y-axis = 16Hz   |   |
| 9        | x               | 0               | 1               | 1               | X               | X               | X               | X               | Accelerometer LP filter -3dB frequency for X-axis = 131Hz                                                               |   |
|          | х               | 0               | 1               | 0               | х               | х               | х               | х               | Accelerometer LP filter -3dB frequency for X-axis = 66Hz                                                                |   |
|          | х               | 0               | 0               | 1               | х               | х               | х               | х               | Accelerometer LP filter -3dB frequency for X-axis = 33Hz                                                                |   |
|          | x               | 0               | 0               | 0               | х               | х               | х               | х               | Accelerometer LP filter -3dB frequency for X-axis = 16Hz                                                                |   |
|          |                 |                 |                 |                 |                 |                 |                 |                 | System configuration, Byte 7:                                                                                           |   |
|          | x               | x               | x               | x               | Ő               | Ő               | 1               | 1               | Accelerometer output unit = INTEGRATED VELOCITY                                                                         |   |
|          | x               | x               | x               | x               | 0               | 0               | 1               | 0               | Accelerometer output unit = AVERAGE ACCELERATION                                                                        |   |
|          | x<br>x          | x<br>x          | X<br>X          | X<br>X          | 0               | 0               | 0               | 1               | Accelerometer output unit = ACCELERATION<br>Accelerometer output unit = INCREMENTAL VELOCITY                            |   |
|          | x<br>x          | X<br>X          | x<br>x          | 1<br>X          | x<br>0          | x<br>0          | x<br>O          | x<br>0          | Accelerometer Z-axis is active<br>Accelerometer output unit = ACCELERATION                                              |   |
| 8        | X               | X<br>X          | X               | 0<br>1          | X               | X               | X<br>X          | X               | Accelerometer Z-axis is inactive                                                                                        |   |
| 0        | x               | x               | 1               | x               | x               | x               | x               | x               | Accelerometer Y-axis is active                                                                                          |   |
|          | x               | х               | 0               | х               | х               | х               | х               | х               | Accelerometer Y-axis is inactive                                                                                        |   |
|          | х               | 1               | х               | х               | х               | х               | х               | х               | Accelerometer X-axis is active                                                                                          |   |
|          | x               | 0               | х               | х               | х               | х               | х               | х               | Accelerometer X-axis is inactive                                                                                        |   |
| <u> </u> | ~               | ~               | ~               | ~               | · ·             | · ·             | · ·             | · ·             | System configuration, Byte 6:                                                                                           |   |
| 1        | x<br>x          | x<br>x          | x<br>x          | x<br>x          | 1               | 1               | 1               | 1               | Gyro g-comp: blas = ACC+0.01Hz-filter, scale = ACC+0.01Hz-filter<br>Gyro g-comp: user-defined                           |   |
|          | x<br>x          | X<br>X          | x<br>x          | X<br>X          | 1<br>1          | 0               | 0<br>1          | 0<br>1          | Gyro g-comp: bias = ACC+0.01Hz-filter , scale = ACC<br>Gyro g-comp: bias = ACC+0.01Hz-filter, scale = ACC+0.01Hz-filter |   |
|          | x               | X<br>X          | X               | X<br>X          | 0<br>1          | 1               | 1               | 1               | Gyro g-comp: bias = ACC, scale = ACC<br>Gyro g-comp: bias = ACC+0.01Hz-filter scale = ACC                               |   |
| 1        | x               | x               | x               | x               | 0               | 1               | 0               | 0               | Gyro g-comp: bias = $ACC+0.01Hz$ -filter , scale = OFF                                                                  |   |
|          | х               | х               | х               | х               | 0               | 0               | 1               | 1               | Gyro g-comp: bias = ACC , scale = OFF                                                                                   |   |
| 1        | х               | х               | х               | х               | 0               | 0               | 1               | 0               | Gyro g-comp: bias = OFF , scale = ACC+0.01Hz-filter                                                                     |   |
| 7        | x               | x               | x               | x               | 0               | 0               | 0               | 1               | Gyro g-comp: bias = OFF , scale = ACC                                                                                   |   |
|          | x               | X               | x               | x               | 0               | 0               | 0               | Ô               | Gyro g-comp: OFF                                                                                                        |   |
| 1        | x<br>x          | 1               | 0               | 0               | X<br>X          | x<br>x          | x<br>x          | x<br>x          | Gyro LP filter -3dB frequency for Z-axis = 131Hz                                                                        |   |
|          | x<br>x          | 0<br>0          | 1               | 0<br>1          | X<br>X          | X<br>X          | X<br>X          | X<br>X          | Gyro LP filter -3dB frequency for Z-axis = 66Hz<br>Gyro LP filter -3dB frequency for Z-axis = 131Hz                     |   |
|          | x               | 0               | 0               | 1               | x               | x               | x               | x               | Gyro LP filter -3dB frequency for Z-axis = 33Hz                                                                         |   |
|          | х               | 0               | 0               | 0               | х               | х               | х               | х               | Gyro LP filter -3dB frequency for Z-axis = 16Hz                                                                         |   |
| 1        |                 |                 |                 |                 |                 |                 |                 | [               | System configuration, Byte 5:                                                                                           |   |





### STIM320 Inertia Measurement Unit

| 25   | C <sub>7</sub> | <b>C</b> <sub>6</sub> | <b>C</b> 5 | <b>C</b> <sub>4</sub> | <b>C</b> <sub>3</sub> | <b>C</b> <sub>2</sub> | C <sub>1</sub> | <b>C</b> <sub>0</sub> |                                                     |
|------|----------------|-----------------------|------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------------------------------------|
| (26) | 0              | 0                     | 0          | 0                     | 1                     | 1                     | 0              | 1                     | <cr> If datagram termination has been selected</cr> |
| (27) | 0              | 0                     | 0          | 0                     | 1                     | 0                     | 1              | 0                     | <lf> If datagram termination has been selected</lf> |

#### 6.3.4 Bias Trim Offset datagram

#### Table 6-12: Specification of the Bias Trim Offset datagram

| Byte#    |                                       |                                       |                                       | Bi                                    | t#                                    |                                       |                                      |                                      | Specification                                                                                        |
|----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|
| -        | 7                                     | 6                                     | 5                                     | 4                                     | 3                                     | 2                                     | 1                                    | 0                                    |                                                                                                      |
|          |                                       |                                       |                                       |                                       |                                       |                                       |                                      |                                      | Bias Trim Offset datagram identifier:                                                                |
| 0        | 1                                     | 1                                     | 0                                     | 1                                     | 0                                     | 0                                     | 0                                    | 1                                    | 0xD1 for datagrams without CR+LF termination                                                         |
|          | 1                                     | 1                                     | 0                                     | 1                                     | 0                                     | 0                                     | 1                                    | 0                                    | 0xD2 for datagrams with CR+LF termination                                                            |
| 1        | Gx <sub>23</sub>                      | Gx <sub>22</sub>                      | Gx <sub>21</sub>                      | Gx <sub>20</sub>                      | Gx <sub>19</sub>                      | Gx <sub>18</sub>                      | $Gx_{17}$                            | $Gx_{16}$                            | X-axis gyro bias trim offset, ref. section 8.6.2.2.2 for conversion to [°/s].                        |
| 2        | Gx <sub>15</sub>                      | $Gx_{14}$                             | Gx <sub>13</sub>                      | Gx <sub>12</sub>                      | G <sub>11</sub>                       | $Gx_{10}$                             | Gx <sub>9</sub>                      | Gx <sub>8</sub>                      | NB: unit is [°/s] regardless of chosen output unit in Normal Mode datagram                           |
| 3        | Gx <sub>7</sub>                       | Gx <sub>6</sub>                       | Gx <sub>5</sub>                       | Gx4                                   | Gx₃                                   | Gx <sub>2</sub>                       | Gx1                                  | $Gx_0$                               |                                                                                                      |
| 4        | Gy <sub>23</sub>                      | Gy <sub>22</sub>                      | Gy <sub>21</sub>                      | Gy <sub>20</sub>                      | Gy <sub>19</sub>                      | Gy <sub>18</sub>                      | Gy <sub>17</sub>                     | $Gy_{16}$                            | Y-axis gyro bias trim offset, ref. section 8.6.2.2.2 for conversion to [°/s].                        |
| 5        | Gy15                                  | Gy <sub>14</sub>                      | Gy <sub>13</sub>                      | Gy <sub>12</sub>                      | Gy11                                  | Gy <sub>10</sub>                      | Gy൭                                  | Gy <sub>8</sub>                      | NB: unit is [°/s] regardless of chosen output unit in Normal Mode datagram                           |
| 6        | Gy <sub>7</sub>                       | Gy <sub>6</sub>                       | Gy₅                                   | Gy <sub>4</sub>                       | Gy₃                                   | Gy <sub>2</sub>                       | Gy₁                                  | Gy₀                                  |                                                                                                      |
| 7        | Gz <sub>23</sub>                      | Gz <sub>22</sub>                      | Gz <sub>21</sub>                      | Gz <sub>20</sub>                      | Gz <sub>19</sub>                      | Gz <sub>18</sub>                      | Gz <sub>17</sub>                     | Gz <sub>16</sub>                     | Z-axis gyro bias trim offset, ref. section 8.6.2.2.2 for conversion to [°/s].                        |
| 8        | Gz15                                  | Gz <sub>14</sub>                      | Gz <sub>13</sub>                      | $Gz_{12}$                             | Gz11                                  | Gz <sub>10</sub>                      | Gz <sub>9</sub>                      | $Gz_8$                               | NB: unit is [°/s] regardless of chosen output unit in Normal Mode datagram                           |
| 9        | Gz <sub>7</sub>                       | Gz <sub>6</sub>                       | Gz <sub>5</sub>                       | Gz <sub>4</sub>                       | Gz <sub>3</sub>                       | Gz <sub>2</sub>                       | Gz <sub>1</sub>                      | $Gz_0$                               |                                                                                                      |
| 10       | Ax <sub>23</sub>                      | Ax <sub>22</sub>                      | Ax <sub>21</sub>                      | Ax <sub>20</sub>                      | Ax <sub>19</sub>                      | Ax <sub>18</sub>                      | Ax <sub>17</sub>                     | Ax <sub>16</sub>                     | X-axis accelerometer bias trim offset, ref. section 8.6.2.2.7 for conversion to [q].                 |
| 11       | Ax <sub>15</sub>                      | Ax <sub>14</sub>                      | Ax <sub>13</sub>                      | Ax <sub>12</sub>                      | Ax <sub>11</sub>                      | Ax <sub>10</sub>                      | Ax <sub>9</sub>                      | Ax <sub>8</sub>                      | NB: unit is [g] regardless of chosen output unit in Normal Mode datagram                             |
| 12       | Ax <sub>7</sub>                       | Ax <sub>6</sub>                       | Ax <sub>5</sub>                       | Ax <sub>4</sub>                       | Ax <sub>3</sub>                       | $Ax_2$                                | Ax <sub>1</sub>                      | $Ax_0$                               |                                                                                                      |
| 13       | Ay <sub>23</sub>                      | Ay <sub>22</sub>                      | Ay <sub>21</sub>                      | Ay <sub>20</sub>                      | Ay <sub>19</sub>                      | Ay <sub>18</sub>                      | Ay <sub>17</sub>                     | Ay <sub>16</sub>                     | Y-axis accelerometer bias trim offset, ref. section 8.6.2.2.7 for conversion to [g].                 |
| 14       | Ay <sub>15</sub>                      | Ay <sub>14</sub>                      | Ay <sub>13</sub>                      | Ay <sub>12</sub>                      | Ay <sub>11</sub>                      | Ay <sub>10</sub>                      | Аy <sub>9</sub>                      | Ay <sub>8</sub>                      | NB: unit is [g] regardless of chosen output unit in Normal Mode datagram                             |
| 15       | Ay <sub>7</sub>                       | Ay <sub>6</sub>                       | Ay <sub>5</sub>                       | Ay <sub>4</sub>                       | Ay <sub>3</sub>                       | Ay <sub>2</sub>                       | Ay₁                                  | Ay <sub>0</sub>                      | TVD. unit is [9] regardless of chosen output unit in Normal Mode datagram                            |
| 16       | Az <sub>23</sub>                      | Az <sub>22</sub>                      | Az <sub>21</sub>                      | Az <sub>20</sub>                      | Az <sub>19</sub>                      | Az <sub>18</sub>                      | Az <sub>17</sub>                     | Az <sub>16</sub>                     | Z-axis accelerometer bias trim offset, ref. section 8.6.2.2.7 for conversion to [g].                 |
| 17       | Az <sub>15</sub>                      | Az <sub>14</sub>                      | Az <sub>13</sub>                      | Az <sub>12</sub>                      | Az <sub>11</sub>                      | Az <sub>10</sub>                      | Az <sub>9</sub>                      | Az <sub>8</sub>                      | NB: unit is [g] regardless of chosen output unit in Normal Mode datagram                             |
| 18       | Az <sub>7</sub>                       | Az <sub>6</sub>                       | Az <sub>5</sub>                       | $Az_4$                                | $Az_3$                                | $Az_2$                                | $Az_1$                               | $Az_0$                               |                                                                                                      |
| 19       | х                                     | х                                     | х                                     | Х                                     | х                                     | х                                     | Х                                    | Х                                    |                                                                                                      |
| 20       | х                                     | х                                     | х                                     | х                                     | х                                     | х                                     | Х                                    | Х                                    | For future use                                                                                       |
| 21       | х                                     | х                                     | х                                     | Х                                     | Х                                     | х                                     | Х                                    | Х                                    |                                                                                                      |
| 22       | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                    | Х                                    |                                                                                                      |
| 23       | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                    | Х                                    | For future use                                                                                       |
| 24       | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                    | Х                                    |                                                                                                      |
| 25       | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                    | Х                                    |                                                                                                      |
| 26       | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | Х                                     | х                                    | Х                                    | For future use                                                                                       |
| 27       | X                                     | X                                     | X                                     | X                                     | X                                     | X                                     | X                                    | X                                    |                                                                                                      |
| 28<br>29 | Rf <sub>31</sub>                      | Rf <sub>30</sub>                      | Rf <sub>29</sub>                      | Rf <sub>28</sub>                      | Rf <sub>27</sub>                      | Rf <sub>26</sub>                      | Rf <sub>25</sub>                     | Rf <sub>24</sub>                     |                                                                                                      |
| 29<br>30 | Rf <sub>23</sub><br>Rf <sub>15</sub>  | Rf <sub>22</sub><br>Rf <sub>14</sub>  | Rf <sub>21</sub><br>Rf <sub>13</sub>  | Rf <sub>20</sub><br>Rf <sub>12</sub>  | Rf <sub>19</sub><br>Rf <sub>11</sub>  | Rf <sub>18</sub><br>Rf <sub>10</sub>  | Rf <sub>17</sub><br>Rf <sub>9</sub>  | Rf <sub>16</sub><br>Rf <sub>8</sub>  | Reference info to last adjustment                                                                    |
| 30       | RI <sub>15</sub>                      | RI <sub>14</sub>                      | Rf <sub>5</sub>                       | Rf <sub>4</sub>                       | Rf <sub>3</sub>                       | Rf <sub>2</sub>                       | Rf <sub>1</sub>                      | Rf <sub>0</sub>                      |                                                                                                      |
| 31       | Sav <sub>15</sub>                     | Sav <sub>14</sub>                     | Sav <sub>13</sub>                     | Sav <sub>12</sub>                     | Sav <sub>11</sub>                     | Sav <sub>10</sub>                     | Sav <sub>9</sub>                     | Sav <sub>8</sub>                     |                                                                                                      |
| 33       | Sav <sub>15</sub><br>Sav <sub>7</sub> | Sav <sub>14</sub><br>Sav <sub>6</sub> | Sav <sub>13</sub><br>Sav <sub>5</sub> | Sav <sub>12</sub><br>Sav <sub>4</sub> | Sav <sub>11</sub><br>Sav <sub>3</sub> | Sav <sub>10</sub><br>Sav <sub>2</sub> | Sav <sub>9</sub><br>Sav <sub>1</sub> | Sav <sub>8</sub><br>Sav <sub>0</sub> | Remaining number of saves                                                                            |
| 34       | X                                     | X                                     | X                                     | X                                     | X                                     | X X                                   | X                                    | X                                    | For future use                                                                                       |
| 35       | x                                     | x                                     | X                                     | X                                     | X                                     | x                                     | x                                    | X                                    | For future use                                                                                       |
| 36       | C <sub>31</sub>                       | C <sub>30</sub>                       | C <sub>29</sub>                       | C <sub>28</sub>                       | C <sub>27</sub>                       | C <sub>26</sub>                       | C <sub>25</sub>                      | C <sub>24</sub>                      |                                                                                                      |
| 37       | C <sub>23</sub>                       | C <sub>22</sub>                       | C <sub>21</sub>                       | C <sub>20</sub>                       | C <sub>19</sub>                       | C <sub>18</sub>                       | C <sub>17</sub>                      | C <sub>16</sub>                      |                                                                                                      |
| 38       | C <sub>15</sub>                       | C <sub>14</sub>                       | C <sub>13</sub>                       | C <sub>12</sub>                       | C <sub>11</sub>                       | C <sub>10</sub>                       | C9                                   |                                      | $\frac{c_{16}}{c_8}$ Cyclic Redundancy Check is performed on all preceding bytes, ref. section 6.3.7 |
| 39       | C <sub>7</sub>                        | C <sub>6</sub>                        | C <sub>5</sub>                        | C4                                    | C <sub>3</sub>                        | C <sub>2</sub>                        | C1                                   |                                      | <u> </u>                                                                                             |
| (40)     | 0                                     | 0                                     | 0                                     | 0                                     | 1                                     | 1                                     | 0                                    | 1                                    | <cr> If datagram termination has been selected</cr>                                                  |
| (41)     | 0                                     | 0                                     | 0                                     | 0                                     | 1                                     | 0                                     | 1                                    | 0                                    | <lf> If datagram termination has been selected</lf>                                                  |
|          |                                       | · · · · · · · · · · · · · · · · · · · |                                       |                                       |                                       |                                       |                                      |                                      |                                                                                                      |





### STIM320 Inertia Measurement Unit

#### 6.3.5 Extended Error Information datagram

#### Table 6-13: Specification of the Extended Error Information datagram

| Byte# |                  |                       |                  |                       | t#                     |                       |                       |                        | Specification                                                     |
|-------|------------------|-----------------------|------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------------------------------------------------|
| -     | 7                | 6                     | 5                | 4                     | 3                      | 2                     | 1                     | 0                      |                                                                   |
|       |                  |                       |                  |                       |                        |                       |                       |                        | Extended Error Information datagram identifier:                   |
| 0     | 1                | 0                     | 1                | 1                     | 1                      | 1                     | 1                     | 0                      | 0xBE for datagrams without CR+LF termination                      |
|       | 1                | 0                     | 1                | 1                     | 1                      | 1                     | 1                     | 1                      | 0xBF for datagrams with CR+LF termination                         |
| 1     | E <sub>127</sub> | E <sub>126</sub>      | E <sub>125</sub> | E <sub>124</sub>      | E <sub>123</sub>       | E <sub>122</sub>      | E <sub>121</sub>      | E <sub>120</sub>       | Ref. Table 6-14                                                   |
| 2     | E <sub>119</sub> | E <sub>118</sub>      | E <sub>117</sub> | E <sub>116</sub>      | E <sub>115</sub>       | E <sub>114</sub>      | E <sub>113</sub>      | E <sub>112</sub>       | Ref. Table 6-14                                                   |
| 3     | E <sub>111</sub> | E <sub>110</sub>      | E <sub>109</sub> | E <sub>108</sub>      | E <sub>107</sub>       | E <sub>106</sub>      | E <sub>105</sub>      | E <sub>104</sub>       | Ref. Table 6-14                                                   |
| 4     | E <sub>103</sub> | E <sub>102</sub>      | E <sub>101</sub> | E <sub>100</sub>      | E <sub>99</sub>        | E <sub>98</sub>       | E <sub>97</sub>       | E <sub>96</sub>        | Ref. Table 6-14                                                   |
| 5     | E <sub>95</sub>  | E <sub>94</sub>       | E <sub>93</sub>  | E <sub>92</sub>       | E <sub>91</sub>        | E <sub>90</sub>       | E <sub>89</sub>       | E <sub>88</sub>        | Ref. Table 6-14                                                   |
| 6     | E <sub>87</sub>  | E <sub>86</sub>       | E <sub>85</sub>  | E <sub>84</sub>       | E <sub>83</sub>        | E <sub>82</sub>       | E <sub>81</sub>       | E <sub>80</sub>        | Ref. Table 6-14                                                   |
| 7     | E <sub>79</sub>  | E <sub>78</sub>       | E <sub>77</sub>  | E <sub>76</sub>       | E <sub>75</sub>        | E <sub>74</sub>       | E <sub>73</sub>       | E <sub>72</sub>        | Ref. Table 6-14                                                   |
| 8     | E <sub>71</sub>  | E <sub>70</sub>       | E <sub>69</sub>  | E <sub>68</sub>       | E <sub>67</sub>        | E <sub>66</sub>       | E <sub>65</sub>       | E <sub>64</sub>        | Ref. Table 6-14                                                   |
| 9     | E <sub>63</sub>  | E <sub>62</sub>       | E <sub>61</sub>  | E <sub>60</sub>       | E <sub>59</sub>        | E <sub>58</sub>       | E <sub>57</sub>       | E <sub>56</sub>        | Ref. Table 6-14                                                   |
| 10    | E <sub>55</sub>  | E <sub>54</sub>       | E <sub>53</sub>  | E <sub>52</sub>       | E <sub>51</sub>        | E <sub>50</sub>       | E <sub>49</sub>       | E <sub>48</sub>        | Ref. Table 6-14                                                   |
| 11    | E <sub>47</sub>  | E <sub>46</sub>       | E <sub>45</sub>  | E <sub>44</sub>       | E <sub>43</sub>        | E <sub>42</sub>       | E <sub>41</sub>       | E <sub>40</sub>        | Ref. Table 6-14                                                   |
| 12    | E <sub>39</sub>  | E <sub>38</sub>       | E <sub>37</sub>  | E <sub>36</sub>       | E <sub>35</sub>        | E <sub>34</sub>       | E <sub>33</sub>       | E <sub>32</sub>        | Ref. Table 6-14                                                   |
| 13    | E <sub>31</sub>  | E <sub>30</sub>       | E <sub>29</sub>  | E <sub>28</sub>       | E <sub>27</sub>        | E <sub>26</sub>       | E <sub>25</sub>       | E <sub>24</sub>        | Ref. Table 6-14                                                   |
| 14    | E <sub>23</sub>  | E <sub>22</sub>       | E <sub>21</sub>  | E <sub>20</sub>       | E <sub>19</sub>        | E <sub>18</sub>       | E <sub>17</sub>       | E <sub>16</sub>        | Ref. Table 6-14                                                   |
| 15    | E <sub>15</sub>  | E <sub>14</sub>       | E <sub>13</sub>  | E <sub>12</sub>       | E <sub>11</sub>        | E <sub>10</sub>       | E9                    | E <sub>8</sub>         | Ref. Table 6-14                                                   |
| 16    | E <sub>7</sub>   | $E_6$                 | E₅               | E <sub>4</sub>        | E₃                     | E <sub>2</sub>        | E <sub>1</sub>        | E₀                     | Ref. Table 6-14                                                   |
| 17    | C <sub>31</sub>  | C <sub>30</sub>       | C <sub>29</sub>  | C <sub>28</sub>       | C <sub>27</sub>        | C <sub>26</sub>       | C <sub>25</sub>       | C <sub>24</sub>        |                                                                   |
| 18    | C <sub>23</sub>  | C <sub>22</sub>       | C <sub>21</sub>  | C <sub>20</sub>       | <b>C</b> <sub>19</sub> | C <sub>18</sub>       | C <sub>17</sub>       | <b>C</b> <sub>16</sub> | Cyclic Redundancy Check is performed on all preceding bytes, ref. |
| 19    | C <sub>15</sub>  | C <sub>14</sub>       | C <sub>13</sub>  | C <sub>12</sub>       | C <sub>11</sub>        | C <sub>10</sub>       | C <sub>9</sub>        | C <sub>8</sub>         | section 6.3.7                                                     |
| 20    | C <sub>7</sub>   | <b>C</b> <sub>6</sub> | <b>C</b> 5       | <b>C</b> <sub>4</sub> | <b>C</b> <sub>3</sub>  | <b>C</b> <sub>2</sub> | <b>C</b> <sub>1</sub> | <b>C</b> <sub>0</sub>  |                                                                   |
| (21)  | 0                | 0                     | 0                | 0                     | 1                      | 1                     | 0                     | 1                      | <cr> If datagram termination has been selected</cr>               |
| (22)  | 0                | 0                     | 0                | 0                     | 1                      | 0                     | 1                     | 0                      | <lf> If datagram termination has been selected</lf>               |

#### Table 6-14: Specification of the Extended Error Information

| Bit#             | Specification             | Bit#             | Specification             | Bit#             | Specification             | Bit#             | Specification            |
|------------------|---------------------------|------------------|---------------------------|------------------|---------------------------|------------------|--------------------------|
| E <sub>127</sub> | For future use (=0)       | E <sub>126</sub> | For future use (=0)       | E <sub>125</sub> | For future use (=0)       | E <sub>124</sub> | For future use (=0)      |
| E <sub>123</sub> | For future use (=0)       | E <sub>122</sub> | For future use (=0)       | E <sub>121</sub> | For future use (=0)       | E <sub>120</sub> | For future use (=0)      |
| E <sub>119</sub> | For future use (=0)       | E <sub>118</sub> | For future use (=0)       | E <sub>117</sub> | For future use (=0)       | E <sub>116</sub> | For future use (=0)      |
| E <sub>115</sub> | For future use (=0)       | E <sub>114</sub> | For future use (=0)       | E <sub>113</sub> | For future use (=0)       | E <sub>112</sub> | PPS time overflow        |
| E <sub>111</sub> | Reference voltage#4 error | E <sub>110</sub> | For future use (=0)       | E <sub>109</sub> | For future use (=0)       | E <sub>108</sub> | For future use (=0)      |
| E <sub>107</sub> | For future use (=0)       | E <sub>106</sub> | ACC Z: Overload           | E <sub>105</sub> | ACC Y: Overload           | E <sub>104</sub> | ACC X: Overload          |
| E <sub>103</sub> | GYRO Z: Overload          | E <sub>102</sub> | GYRO Y: Overload          | E <sub>101</sub> | GYRO X: Overload          | E <sub>100</sub> | GYRO Z: Config,error     |
| E <sub>99</sub>  | GYRO Y: Config,error      | E <sub>98</sub>  | GYRO X: Config.error      | E <sub>97</sub>  | μC temperature failure    | E <sub>96</sub>  | GYRO Z: ASIC temp.dev.   |
| E <sub>95</sub>  | GYRO Y: ASIC temp.dev     | E <sub>94</sub>  | GYRO X: ASIC temp.dev     | E <sub>93</sub>  | For future use (=0)       | E <sub>92</sub>  | For future use (=0)      |
| E <sub>91</sub>  | ACC Z: Temp.deviation     | E <sub>90</sub>  | ACC Y: Temp.deviation     | E <sub>89</sub>  | ACC X: Temp.deviation     | E <sub>88</sub>  | GYRO Z: Temp.deviation   |
| E <sub>87</sub>  | GYRO Y: Temp.deviation    | E <sub>86</sub>  | GYRO X: Temp.deviation    | E <sub>85</sub>  | Self-test not running     | E <sub>84</sub>  | For future use (=0)      |
| E <sub>83</sub>  | For future use (=0)       | E <sub>82</sub>  | TEMP ACC Z: ADC error     | E <sub>81</sub>  | TEMP ACC Y: ADC error     | E <sub>80</sub>  | TEMP ACC X: ADC error    |
| E <sub>79</sub>  | TEMP GYRO Z: Clipped      | E <sub>78</sub>  | TEMP GYRO Y: Clipped      | E77              | TEMP GYRO X: Clipped      | E <sub>76</sub>  | For future use (=0)      |
| E <sub>75</sub>  | For future use (=0)       | E <sub>74</sub>  | For future use (=0)       | E <sub>73</sub>  | For future use (=0)       | E <sub>72</sub>  | ACC Z: ADC error         |
| E <sub>71</sub>  | ACC Y: ADC error          | E <sub>70</sub>  | ACC X: ADC error          | E <sub>69</sub>  | For future use (=0)       | E <sub>68</sub>  | UART unable to transmit  |
| E <sub>67</sub>  | GYRO Z: data missing      | E <sub>66</sub>  | GYRO Y: Data missing      | E <sub>65</sub>  | GYRO X: Data missing      | E <sub>64</sub>  | Transmit stack warning   |
| E <sub>63</sub>  | Flash stack warning       | E <sub>62</sub>  | Sample stack warning      | E <sub>61</sub>  | Command stack warning     | E <sub>60</sub>  | Monitor stack warning    |
| E <sub>59</sub>  | Supply overvoltage        | E <sub>58</sub>  | Internal DAC error        | E <sub>57</sub>  | Flash check error         | E <sub>56</sub>  | RAM check error          |
| E <sub>55</sub>  | For future use (=0)       | E <sub>54</sub>  | For future use (=0)       | E <sub>53</sub>  | For future use (=0)       | E <sub>52</sub>  | For future use (=0)      |
| E <sub>51</sub>  | For future use (=0)       | E <sub>50</sub>  | TEMP ACC Z: Error         | $E_{49}$         | TEMP ACC Y: Error         | E <sub>48</sub>  | TEMP ACC X: Error        |
| E <sub>47</sub>  | ACC Z: Clipped            | E <sub>46</sub>  | ACC Y: Clipped            | E <sub>45</sub>  | ACC X: Clipped            | E <sub>44</sub>  | GYRO Z: Data lost        |
| E <sub>43</sub>  | GYRO Z: Exc.ampl.error    | E <sub>42</sub>  | GYRO Z: Int.comm.error    | E <sub>41</sub>  | For future use (=0)       | E <sub>40</sub>  | For future use (=0)      |
| E <sub>39</sub>  | GYRO Z: ASIC overflow, I  | E <sub>38</sub>  | GYRO Z: ASIC overflow, Q  | E <sub>37</sub>  | GYRO Y: Data lost         | E <sub>36</sub>  | GYRO Y: Exc.ampl.error   |
| E <sub>35</sub>  | GYRO Y: Int.comm.error    | E <sub>34</sub>  | For future use (=0)       | E <sub>33</sub>  | For future use (=0)       | E <sub>32</sub>  | GYRO Y: ASIC overflow, I |
| E <sub>31</sub>  | GYRO Y: ASIC overflow, Q  | E <sub>30</sub>  | GYRO X: Data lost         | E <sub>29</sub>  | GYRO X: Exc.ampl.error    | E <sub>28</sub>  | GYRO X: Int.comm.error   |
| E <sub>27</sub>  | For future use (=0)       | E <sub>26</sub>  | For future use (=0)       | E <sub>25</sub>  | GYRO X: ASIC overflow, I  | E <sub>24</sub>  | GYRO X: ASIC overflow, Q |
| E <sub>23</sub>  | Regulated voltage#3 error | E <sub>22</sub>  | Regulated voltage#2 error | E <sub>21</sub>  | Regulated voltage#1 error | E <sub>20</sub>  | Supply voltage error     |
| E <sub>19</sub>  | Reference voltage#3 error | E <sub>18</sub>  | Reference voltage#2 error | E <sub>17</sub>  | Reference voltage#1 error | E <sub>16</sub>  | Start-up phase active    |
| E <sub>15</sub>  | GYRO Z: Int.comm.error    | E <sub>14</sub>  | GYRO Y: Int.comm.error    | E <sub>13</sub>  | GYRO X: Int.comm.error    | E <sub>12</sub>  | GYRO Z: Clipped          |
| E <sub>11</sub>  | GYRO Y: Clipped           | E <sub>10</sub>  | GYRO X: Clipped           | E9               | TEMP GYRO Z: Error        | E <sub>8</sub>   | TEMP GYRO Y: Error       |
| E7               | TEMP GYRO X: Error        | E <sub>6</sub>   | GYRO Z: ASIC temp.error   | E <sub>5</sub>   | GYRO Y: ASIC temp.error   | E4               | GYRO X: ASIC temp.error  |
| E <sub>3</sub>   | µC temperature error      | E <sub>2</sub>   | GYRO Z: Exc.freq.error    | E <sub>1</sub>   | GYRO Y: Exc.freq.error    | E <sub>0</sub>   | GYRO X: Exc.freq.error   |





### STIM320 Inertia Measurement Unit

#### 6.3.6 Normal Mode datagram

#### Table 6-15: Specification of the Normal Mode datagram (full data content in datagram)

| Byte#    |                                     | 0000                                |                                     | Bi                                  | t#                                  |                                     |                                     | iouo                                | Specification                                                                                                                                   |
|----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| _,       | 7                                   | 6                                   | 5                                   | 4                                   | 3                                   | 2                                   | 1                                   | 0                                   |                                                                                                                                                 |
| 0        | 1                                   | 0                                   | 1                                   | 0                                   | 1                                   | 1                                   | 1                                   | 1                                   | Normal Mode datagram identifier for Normal Mode datagram with full content. Identifier for reduced content datagrams can be found in Table 6-16 |
| 1        | Gx <sub>23</sub>                    | Gx <sub>22</sub>                    | Gx <sub>21</sub>                    | Gx <sub>20</sub>                    | Gx <sub>19</sub>                    | Gx <sub>18</sub>                    | Gx <sub>17</sub>                    | Gx <sub>16</sub>                    |                                                                                                                                                 |
| 2        | Gx <sub>15</sub>                    | Gx <sub>14</sub>                    | Gx <sub>13</sub>                    | Gx <sub>12</sub>                    | G <sub>11</sub>                     | Gx <sub>10</sub>                    | Gx <sub>9</sub>                     | Gx <sub>8</sub>                     | X-axis gyro output, ref. sections 8.6.2.2.2 to 8.6.2.2.5 for conversion to units                                                                |
| 3        | Gx7                                 | Gx <sub>6</sub>                     | Gx <sub>5</sub>                     | Gx <sub>4</sub>                     | $Gx_3$                              | Gx <sub>2</sub>                     | Gx1                                 | Gx <sub>0</sub>                     |                                                                                                                                                 |
| 4        | Gy <sub>23</sub>                    | Gy <sub>22</sub>                    | Gy <sub>21</sub>                    | Gy <sub>20</sub>                    | Gy <sub>19</sub>                    | Gy <sub>18</sub>                    | Gy <sub>17</sub>                    | Gy <sub>16</sub>                    |                                                                                                                                                 |
| 5        | Gy <sub>15</sub>                    | Gy <sub>14</sub>                    | Gy <sub>13</sub>                    | Gy <sub>12</sub>                    | Gy <sub>11</sub>                    | $Gy_{10}$                           | Gy₃                                 | Gyଃ                                 | Y-axis gyro output, ref. sections 8.6.2.2.2 to 8.6.2.2.5 for conversion to units                                                                |
| 6        | Gy <sub>7</sub>                     | Gy <sub>6</sub>                     | Gy <sub>5</sub>                     | Gy <sub>4</sub>                     | Gy₃                                 | Gy <sub>2</sub>                     | Gy₁                                 | Gy <sub>0</sub>                     |                                                                                                                                                 |
| 7        | Gz <sub>23</sub>                    | Gz <sub>22</sub>                    | Gz <sub>21</sub>                    | Gz <sub>20</sub>                    | Gz <sub>19</sub>                    | Gz <sub>18</sub>                    | Gz <sub>17</sub>                    | Gz <sub>16</sub>                    |                                                                                                                                                 |
| 8        | Gz <sub>15</sub>                    | Gz <sub>14</sub>                    | Gz <sub>13</sub>                    | Gz <sub>12</sub>                    | Gz11                                | Gz <sub>10</sub>                    | Gz <sub>9</sub>                     | Gz <sub>8</sub>                     | Z-axis gyro output, ref. sections 8.6.2.2.2 to 8.6.2.2.5 for conversion to units                                                                |
| 9        | Gz <sub>7</sub>                     | Gz <sub>6</sub>                     | Gz <sub>5</sub>                     | Gz <sub>4</sub>                     | Gz <sub>3</sub>                     | Gz <sub>2</sub>                     | Gz <sub>1</sub>                     | Gz <sub>0</sub>                     |                                                                                                                                                 |
| 10       | Gs <sub>7</sub>                     | Gs <sub>6</sub>                     | Gs <sub>5</sub>                     | Gs <sub>4</sub>                     | Gs <sub>3</sub>                     | Gs <sub>2</sub>                     | Gs₁                                 | Gs <sub>0</sub>                     | STATUS byte for gyro measurements, ref. Table 6-18                                                                                              |
| 11       | Ax <sub>23</sub>                    | Ax <sub>22</sub>                    | Ax <sub>21</sub>                    | Ax <sub>20</sub>                    | Ax <sub>19</sub>                    | Ax <sub>18</sub>                    | Ax <sub>17</sub>                    | Ax <sub>16</sub>                    |                                                                                                                                                 |
| 12       | Ax <sub>15</sub>                    | Ax <sub>14</sub>                    | Ax <sub>13</sub>                    | Ax <sub>12</sub>                    | Ax <sub>11</sub>                    | Ax <sub>10</sub>                    | Ax <sub>9</sub>                     | Ax <sub>8</sub>                     | X-axis accelerometer output, ref. sections 8.6.2.2.7 to 8.6.2.2.10 for conversion to units                                                      |
| 13<br>14 | Ax <sub>7</sub>                     | Ax <sub>6</sub>                     | Ax <sub>5</sub>                     | Ax <sub>4</sub>                     | $Ax_3$                              | $Ax_2$                              | Ax <sub>1</sub>                     | Ax <sub>0</sub>                     |                                                                                                                                                 |
| 14       | Ay <sub>23</sub>                    | Ay <sub>22</sub>                    | Ay <sub>21</sub>                    | Ay <sub>20</sub>                    | Ay <sub>19</sub>                    | Ay <sub>18</sub>                    | Ay <sub>17</sub>                    | Ay <sub>16</sub>                    | V avia appalarameter autout, raf, apotiona 9,6,2,2,7 to 9,6,2,2,10 for applyonian to unita                                                      |
| 15       | Ay <sub>15</sub>                    | Ay <sub>14</sub>                    | Ay <sub>13</sub>                    | Ay <sub>12</sub>                    |                                     |                                     | Ay <sub>9</sub>                     | Ay <sub>8</sub>                     | Y-axis accelerometer output, ref. sections 8.6.2.2.7 to 8.6.2.2.10 for conversion to units                                                      |
| 10       | Ay <sub>7</sub><br>Az <sub>23</sub> | Ay <sub>6</sub><br>Az <sub>22</sub> | Ay <sub>5</sub><br>Az <sub>21</sub> | Ay <sub>4</sub><br>Az <sub>20</sub> | Ay <sub>3</sub><br>Az <sub>19</sub> | Ay <sub>2</sub><br>Az <sub>18</sub> | Ay <sub>1</sub><br>Az <sub>17</sub> | Ay <sub>0</sub><br>Az <sub>16</sub> |                                                                                                                                                 |
| 18       | AZ <sub>15</sub>                    | AZ <sub>14</sub>                    | AZ <sub>13</sub>                    | AZ <sub>12</sub>                    | AZ <sub>19</sub>                    | AZ <sub>18</sub>                    | $Az_{9}$                            | AZ <sub>16</sub>                    | Z-axis accelerometer output, ref. sections 8.6.2.2.7 to 8.6.2.2.10 for conversion to units                                                      |
| 10       | Az <sub>7</sub>                     | $Az_6$                              | $Az_5$                              | $Az_4$                              | $Az_3$                              | $Az_2$                              | Az <sub>1</sub>                     | $Az_0$                              |                                                                                                                                                 |
| 20       | As <sub>7</sub>                     | As <sub>6</sub>                     | As <sub>5</sub>                     | As <sub>4</sub>                     | As <sub>3</sub>                     | As <sub>2</sub>                     | As <sub>1</sub>                     | As <sub>0</sub>                     | STATUS byte for accelerometer measurements, ref. Table 6-18                                                                                     |
| 21       |                                     |                                     | GTx <sub>13</sub>                   |                                     | -                                   | GTx <sub>10</sub>                   | GT <sub>x9</sub>                    | GT <sub>x8</sub>                    |                                                                                                                                                 |
| 22       | GT <sub>x7</sub>                    |                                     |                                     |                                     |                                     | GTx <sub>2</sub>                    | GTx <sub>1</sub>                    | GTx <sub>0</sub>                    | X-axis gyro temperature data, ref. section 8.6.2.2.13 for conversion to units                                                                   |
| 23       |                                     |                                     |                                     | Gty <sub>12</sub>                   |                                     |                                     | Gty <sub>9</sub>                    | Gty <sub>8</sub>                    |                                                                                                                                                 |
| 24       | Gty <sub>7</sub>                    | Gty <sub>6</sub>                    | Gty <sub>5</sub>                    | Gty <sub>4</sub>                    | Gty <sub>3</sub>                    | Gty <sub>2</sub>                    | Gty₁                                | Gty <sub>0</sub>                    | Y-axis gyro temperature data, ref. section 8.6.2.2.13 for conversion to units                                                                   |
| 25       | GTz <sub>15</sub>                   | GTz <sub>14</sub>                   | GTz <sub>13</sub>                   | GTz <sub>12</sub>                   | GTz <sub>11</sub>                   | GTz <sub>10</sub>                   | GTz <sub>9</sub>                    | GTz <sub>8</sub>                    | Z avia gura temperatura data, raf agatian 8 6 2 2 12 for conversion to units                                                                    |
| 26       | GTz7                                | $GTz_6$                             | $GTz_5$                             | $GTz_4$                             | $GTz_3$                             | $GTz_2$                             | $GTz_1$                             | $GTz_0$                             | Z-axis gyro temperature data, ref. section 8.6.2.2.13 for conversion to units                                                                   |
| 27       |                                     | •                                   | -                                   | $GTs_4$                             | -                                   |                                     | GTs <sub>1</sub>                    | $GTs_0$                             | STATUS byte for gyro temperature measurements, ref. Table 6-18                                                                                  |
| 28       | Atx <sub>15</sub>                   | $Atx_{14}$                          | Atx <sub>13</sub>                   |                                     | Atx <sub>11</sub>                   | Atx <sub>10</sub>                   | Atx <sub>9</sub>                    | Atx <sub>8</sub>                    | X-axis accelerometer temperature data, ref. section 8.6.2.2.13 for conversion to units                                                          |
| 29       | Atx <sub>7</sub>                    | Atx <sub>6</sub>                    | Atx <sub>5</sub>                    | Atx <sub>4</sub>                    | $Atx_3$                             | Atx <sub>2</sub>                    | Atx <sub>1</sub>                    | Atx <sub>0</sub>                    |                                                                                                                                                 |
| 30       | Aty <sub>15</sub>                   | Aty <sub>14</sub>                   | Aty <sub>13</sub>                   |                                     |                                     | Aty <sub>10</sub>                   | Aty <sub>9</sub>                    | Aty <sub>8</sub>                    | Y-axis accelerometer temperature data, ref. section 8.6.2.2.13 for conversion to units                                                          |
| 31       | Aty <sub>7</sub>                    | Aty <sub>6</sub>                    | Aty <sub>5</sub>                    | Aty <sub>4</sub>                    | Aty <sub>3</sub>                    | Aty <sub>2</sub>                    | Aty <sub>1</sub>                    | Aty <sub>0</sub>                    |                                                                                                                                                 |
| 32       | Atz <sub>15</sub>                   | Atz <sub>14</sub>                   | Atz <sub>13</sub>                   |                                     | Atz <sub>11</sub>                   | Atz <sub>10</sub>                   | Atz <sub>9</sub>                    | Atz <sub>8</sub>                    | Z-axis accelerometer temperature data, ref. section 8.6.2.2.13 for conversion to units                                                          |
| 33       | Atz <sub>7</sub>                    | Atz <sub>6</sub>                    | Atz <sub>5</sub>                    | Atz <sub>4</sub>                    | Atz <sub>3</sub>                    | Atz <sub>2</sub>                    | Atz <sub>1</sub>                    | Atz <sub>0</sub>                    |                                                                                                                                                 |
| 34       | Ats <sub>7</sub>                    | Ats <sub>6</sub>                    | Ats <sub>5</sub>                    | Ats <sub>4</sub>                    | Ats <sub>3</sub>                    | Ats <sub>2</sub>                    | Ats <sub>1</sub>                    | Ats <sub>0</sub>                    | STATUS byte for accelerometer temperature measurements, ref. Table 6-18                                                                         |
| 35<br>36 | P <sub>23</sub>                     | P <sub>22</sub>                     | P <sub>21</sub>                     | P <sub>20</sub>                     | P <sub>19</sub>                     | P <sub>18</sub>                     | P <sub>17</sub>                     | P <sub>16</sub>                     | DDS ref. continue 8.6.2.2.11 to 8.6.2.2.12 for conversion to units                                                                              |
| 36       | P <sub>15</sub>                     | P <sub>14</sub>                     | P <sub>13</sub>                     | P <sub>12</sub>                     | P <sub>11</sub>                     | P <sub>10</sub>                     | P <sub>9</sub>                      | P <sub>8</sub>                      | PPS, ref. sections 8.6.2.2.11 to 8.6.2.2.12 for conversion to units                                                                             |
| 37       | P <sub>7</sub><br>Ps <sub>7</sub>   | P <sub>6</sub><br>Ps <sub>6</sub>   | P₅<br>Ps₅                           | P <sub>4</sub><br>Ps <sub>4</sub>   | P₃<br>Ps₃                           | P <sub>2</sub><br>Ps <sub>2</sub>   | P <sub>1</sub><br>Ps <sub>1</sub>   | P <sub>0</sub><br>Ps <sub>0</sub>   | STATUS byte for PPS, ref. Table 6-18                                                                                                            |
| 39       | г 57<br>П <sub>15</sub>             | г 5 <sub>6</sub><br>П <sub>14</sub> | n <sub>13</sub>                     |                                     | г <b>з</b> з<br>n <sub>11</sub>     | n <sub>10</sub>                     | г 5 <sub>1</sub><br>П9              | г 5 <sub>0</sub><br>n <sub>8</sub>  | •                                                                                                                                               |
| 40       | n <sub>7</sub>                      | n <sub>6</sub>                      | n <sub>5</sub>                      | n <sub>12</sub><br>n <sub>4</sub>   | n <sub>3</sub>                      | n <sub>2</sub>                      | n <sub>9</sub>                      | n <sub>0</sub>                      | Counter, ref. section 8.6.2.2.14.<br>Note that transmission of high-byte is dependent on chosen datagram                                        |
| 41       | t <sub>15</sub>                     | t <sub>14</sub>                     | t <sub>13</sub>                     | t <sub>12</sub>                     | t <sub>11</sub>                     | t <sub>10</sub>                     | t <sub>9</sub>                      | t <sub>8</sub>                      |                                                                                                                                                 |
| 42       | t <sub>7</sub>                      | t <sub>6</sub>                      | t <sub>5</sub>                      | t <sub>4</sub>                      | t <sub>3</sub>                      | t <sub>2</sub>                      | t <sub>1</sub>                      | t <sub>0</sub>                      | Latency, ref. section 8.6.2.2.15 for conversion to units.                                                                                       |
| 43       | C <sub>31</sub>                     | C <sub>30</sub>                     | C <sub>29</sub>                     | C <sub>28</sub>                     | C <sub>27</sub>                     | C <sub>26</sub>                     | C <sub>25</sub>                     | C <sub>24</sub>                     |                                                                                                                                                 |
| 44       | C <sub>23</sub>                     | C <sub>22</sub>                     | C <sub>21</sub>                     | C <sub>20</sub>                     | C <sub>19</sub>                     | C <sub>18</sub>                     | C <sub>17</sub>                     | C <sub>16</sub>                     | O will's Declaration of Oheeds to a sufference discussion of the test of the test of the test of the test of the                                |
| 45       | C <sub>15</sub>                     | C <sub>14</sub>                     | C <sub>13</sub>                     | C <sub>12</sub>                     | C <sub>11</sub>                     | C <sub>10</sub>                     | <b>C</b> 9                          | C <sub>8</sub>                      | Cyclic Redundancy Check is performed on all preceding bytes, ref. section 6.3.7                                                                 |
| 46       | C <sub>7</sub>                      | <b>C</b> <sub>6</sub>               | <b>C</b> 5                          | C4                                  | C <sub>3</sub>                      | C <sub>2</sub>                      | <b>C</b> <sub>1</sub>               | <u> </u>                            |                                                                                                                                                 |
| (47)     | 0                                   | 0                                   | 0                                   | 0                                   | 1                                   | 1                                   | 0                                   | 1                                   | <cr> If datagram termination has been selected</cr>                                                                                             |
| (48)     | 0                                   | 0                                   | 0                                   | 0                                   | 1                                   | 0                                   | 1                                   | 0                                   | <lf> If datagram termination has been selected</lf>                                                                                             |
| ()       | v                                   | v                                   | v                                   | , v                                 | •                                   | , v                                 | •                                   | v                                   |                                                                                                                                                 |

Normal Mode datagrams with reduced content can be chosen at order or configured in Service Mode. Overview of available datagrams can be found in Table 6-16 and in section 13. When choosing a Normal mode datagram with reduced content, the Normal Mode datagram will be shorter. However, the order of requested data will be transmitted as shown in Table 6-15. When selecting temperature in the datagram, only temperatures for the selected measurement-clusters will be transmitted, e.g. if gyro data only has been chosen together with temperature, only temperatures for the gyros will be transmitted.





### STIM320 Inertia Measurement Unit

#### Table 6-16: Normal Mode datagram identifiers

| Datagram content                        | Counter | Identifier |
|-----------------------------------------|---------|------------|
| Rate                                    | 1 byte  | 0x90       |
| Rate and acceleration                   | 1 byte  | 0x91       |
| Rate and temperature                    | 1 byte  | 0x94       |
| Rate, acceleration and temperature      | 1 byte  | 0xA5       |
| Rate                                    | 2 bytes | 0xE0       |
| Rate and acceleration                   | 2 bytes | 0xE1       |
| Rate and temperature                    | 2 bytes | 0xE2       |
| Rate, acceleration and temperature      | 2 bytes | 0xE3       |
| Rate and PPS                            | 2 bytes | 0xE4       |
| Rate, acceleration and PPS              | 2 bytes | 0xE5       |
| Rate, temperature and PPS               | 2 bytes | 0xE6       |
| Rate, acceleration, temperature and PPS | 2 bytes | 0xE7       |

#### 6.3.7 Cyclic Redundancy Check (CRC)

At the end of all datagrams is a 32-bit Cyclic Redundancy Checksum. The CRC checksum enables the user to detect errors in the transfer of data from STIM320. The CRC is calculated using the following equation:

 $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ seed = 0xFFFFFFF

All preceding data, including the datagram identifier, is included in the CRC.

The CRC-algorithm requires full sets of 32-bits (4 bytes). Several of the defined datagrams from STIM320 have a length which is not an integer number of 4 bytes. In order to have an efficient transmission of data and thereby avoid transmitting bytes with no meaningful content, dummy-byte(s) with content = 0x00 are added when the CRC of the last byte(s) is calculated.

Example: Datagram with ID=0xA5 (rate, acceleration and temperature) has been chosen. This datagram consists of 38 bytes prior to the CRC checksum. Hence this datagram consists of 9 sets of 32 bits + 2 bytes. In order to include the last 2 bytes in the CRC checksum, 2 bytes = 0x00 are added, making the last data bytes the least significant bytes.

Table 6-17 lists the number of dummy-bytes needed to calculate the final CRC-checksum for the different datagrams in Normal Mode.





### STIM320 Inertia Measurement Unit

| Table 6-17: Number of dummy-bytes to be added for CRC-calculation |         |            |               |  |
|-------------------------------------------------------------------|---------|------------|---------------|--|
| Datagram content                                                  | Counter | Identifier | # dummy-bytes |  |
| Part Number datagram                                              | -       | 0xB1, 0xB3 | 0             |  |
| Serial Number datagram                                            | -       | 0xB5, 0xB7 | 0             |  |
| Configuration datagram                                            | -       | 0xEC, 0xED | 2             |  |
| Extended Error Information datagram                               | -       | 0xBE, 0xBF | 3             |  |
| Bias Trim offset datagram                                         | -       | 0xD1, 0xD2 | 0             |  |
| Rate                                                              | 1 byte  | 0x90       | 2             |  |
| Rate and acceleration                                             | 1 byte  | 0x91       | 0             |  |
| Rate and temperature                                              | 1 byte  | 0x94       | 3             |  |
| Rate, acceleration and temperature                                | 1 byte  | 0xA5       | 2             |  |
| Rate                                                              | 2 bytes | 0xE0       | 1             |  |
| Rate and acceleration                                             | 2 bytes | 0xE1       | 3             |  |
| Rate and temperature                                              | 2 bytes | 0xE2       | 2             |  |
| Rate, acceleration and temperature                                | 2 bytes | 0xE3       | 1             |  |
| Rate and PPS                                                      | 2 bytes | 0xE4       | 1             |  |
| Rate, acceleration and PPS                                        | 2 bytes | 0xE5       | 3             |  |
| Rate, temperature and PPS                                         | 2 bytes | 0xE6       | 2             |  |
| Rate, acceleration, temperature and PPS                           | 2 bytes | 0xE7       | 1             |  |

#### 6.4 Status byte

#### Table 6-18: Interpretation of bits in STATUS byte

| Bit | STATUS bit information               | Comment                                    |
|-----|--------------------------------------|--------------------------------------------|
| 7   | 0=OK, 1=System integrity error       |                                            |
| 6   | 0=OK, 1=Start-Up                     |                                            |
| 5   | 0=OK, 1=Outside operating conditions |                                            |
| 4   | 0=OK, 1=Overload                     | Bits 0-2 will flag the overload channel(s) |
| 3   | 0=OK, 1=Error in measurement-        | Bits 0-2 will flag the error channel(s)    |
|     | channel                              |                                            |
| 2   | 0=OK, 1=Z-channel                    | Gyro and accelerometer only                |
| 1   | 0=OK, 1=Y-channel                    | Gyro and accelerometer only                |
| 0   | 0=OK, 1=X-channel                    | Gyro and accelerometer only                |

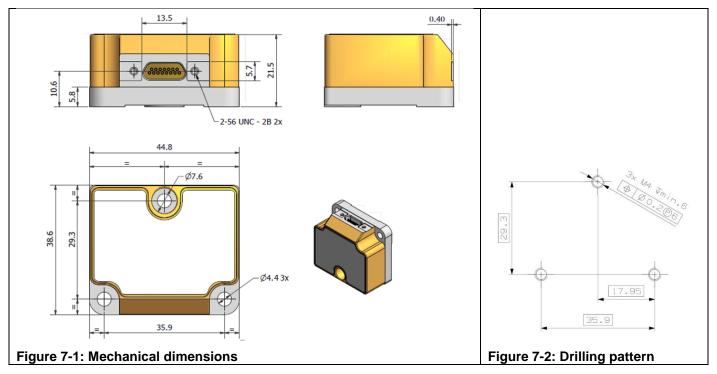
Refer to section 8.7 for more information related to the self-diagnostics of STIM320.





### STIM320 Inertia Measurement Unit

#### 7 MECHANICAL


#### Table 7-1: Mechanical specifications

| Parameter                      | Conditions               | Min Nom Max                 | Unit            | Note |
|--------------------------------|--------------------------|-----------------------------|-----------------|------|
| HOUSING MATERIAL               |                          | Aluminium,                  |                 |      |
|                                |                          | Alloy 6082-T6, DIN EN 754-2 |                 |      |
| SURFACE TREATMENT              |                          |                             |                 |      |
| Passivation                    |                          | Surtec 650                  |                 | 1    |
| WEIGHT                         |                          | 57                          | grams           |      |
| VOLUME                         |                          | 32.6                        | cm <sup>3</sup> |      |
|                                |                          | 1.99                        | in <sup>3</sup> |      |
| DUST AND HUMIDITY              |                          | 1007                        |                 |      |
| CLASSIFICATION                 |                          | IP67                        |                 |      |
| CONNECTOR                      |                          |                             |                 |      |
| Туре                           |                          | Micro-D                     |                 |      |
| Number of pins                 |                          | 15                          |                 |      |
| Contact type                   |                          | female                      |                 |      |
| PLUG                           |                          |                             |                 |      |
| Proposed plug to fit connector |                          | Axon MDA 2 15 P             |                 |      |
| Proposed cover to fit plug     | For best EMI performance | Axon micro-D EMI back shell |                 |      |
| FIXATION BOLTS                 |                          | M4                          |                 |      |
|                                |                          | ISO 4762 / DIN 912          |                 |      |
| Recommended torque             | Steel base               | 3.5                         | Nm              |      |
|                                | Aluminium base           | 3.0                         | Nm              |      |

Note 1: Hexavalent chromium free

#### 7.1 Mechanical dimensions

All dimensions are in mm.



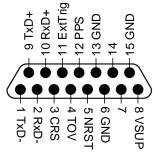
#### Table 7-2: Nominal position of accelerometer mass-centers (ref. Figure 7-5 for reference definition)

| Axis | X-offset | Y-offset | Z-offset |
|------|----------|----------|----------|
| Х    | -32.3    | -10.2    | 12.0     |
| Y    | -26.5    | -6.3     | 13.1     |
| Z    | -27.1    | -10.7    | 6.8      |



DATASHEET




### STIM320 Inertia Measurement Unit

#### 7.2 Advice on mounting orientation

The gyros are sensitive to acceleration-forces in certain directions:

- X- and Y-gyros have their highest sensitivity to acceleration-forces in Z-direction
- Z-gyro has its highest sensitivity to acceleration-forces in Y-direction
- X-gyro has its lowest sensitivity to acceleration-forces in X-direction
- Y-gyro has its lowest sensitivity to acceleration-forces in Y-direction
- Z-gyro has its lowest sensitivity to acceleration-forces in Z-direction

#### 7.3 Pin configuration



#### Figure 7-3: Pin configuration as seen from front of STIM320

#### Table 7-3: Pin descriptions

| Pin# | Label   | Туре   | Description                                                         |
|------|---------|--------|---------------------------------------------------------------------|
| 1    | TxD-    | OUTPUT | RS422 negative output                                               |
| 2    | RxD-    | INPUT  | RS422 negative input                                                |
| 3    | CRS     | OUTPUT | Counter Restart Signal (if not in use, leave floating)              |
| 4    | TOV     | OUTPUT | Time of Validity (if not in use, leave floating)                    |
| 5    | NRST    | INPUT  | Reset (if not in use, connect to VSUP or leave floating)            |
| 6    | GND     | SUPPLY | Internally connected to Power ground (0V)                           |
| 7    |         |        | Not connected                                                       |
| 8    | VSUP    | SUPPLY | Power supply (+5V)                                                  |
| 9    | TxD+    | OUTPUT | RS422 positive output                                               |
| 10   | RxD+    | INPUT  | RS422 positive input                                                |
| 11   | ExtTrig | INPUT  | External trigger (if not in use, connect to VSUP or leave floating) |
| 12   | PPS     | INPUT  | Pulse Per Second input                                              |
| 13   | GND     | INPUT  | Test pin: Connect to ground (0V)                                    |
| 14   |         |        | Not connected                                                       |
| 15   | GND     | SUPPLY | Power ground (0V)                                                   |

#### 7.4 Definition of axes

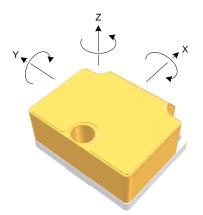



Figure 7-4: Definition of axes





STIM320 Inertia Measurement Unit

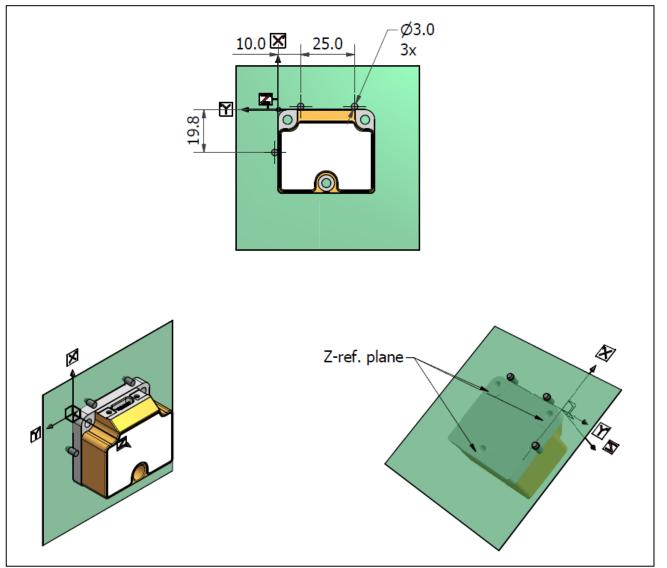
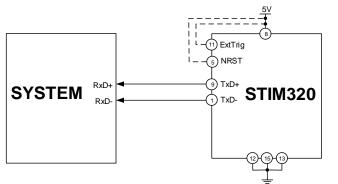


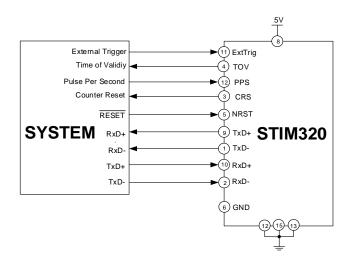

Figure 7-5: Reference points for alignment of axes




DATASHEET

ButterflyGyro<sup>™</sup>

#### STIM320 Inertia Measurement Unit


#### 8 BASIC OPERATION

STIM320 is very simple to use. Unless having been configured with external trigger, the unit will start performing measurements and transmit the results over the RS422 interface without any need for additional signalling or set-up after power-on. Figure 8-1 shows the simplest connection set-up for STIM320.



#### Figure 8-1: Transmit-Only Electrical Connection Diagram

In order to take full advantage of all features of STIM320, the unit needs to be connected as shown in Figure 8-2. In this set-up the system can reset the unit without having to toggle power, the external trigger function can be utilized, configuration parameters can be changed and extended information like diagnostic information can be read from the device.



#### Figure 8-2: Full Function Electrical Connection Diagram

#### 8.1 Reset

STIM320 has a separate reset pin (NRST) in order for the application to reset the unit without having to toggle power.

The reset is active low and has an internal pull-up. Hence the input could be left floating if not in use.

The reset signal is routed to the reset of the microcontroller and effectively forces STIM320 into Init Mode (ref. Figure 8-8 and section 8.6.1).

#### 8.2 External Trigger

STIM320 has a separate digital input pin to be used when the unit has been configured to transmit only upon external trigger. The measurements themselves will be continuously running at the highest sample rate (2000 samples/s) in order to ensure shortest possible latency when a transmission is requested. The input is set to trigger on the falling edge of the input signal and will then transmit one datagram containing the result of the latest measurement.

The input has an internal pull-up. Hence the input could be left floating if not in use.



DATASHEET

ButterflyGyro<sup>™</sup>

#### STIM320 Inertia Measurement Unit

Note that when requesting one of the special Normal Mode datagrams, ref. section 9, the datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data. If several requests for special datagrams are issued prior to an external trigger, it will be the last requested special datagram that will be transmitted.

When STIM320 is in Init Mode (after Power on or Reset), it will transmit the special datagrams as described in section 8.6.1 regardless of external trigger input.

The timing diagram is shown in Figure 8-3. Latency is the time between the moment at which the sample has been digitized + low pass-filtered and the receipt of the external trigger.

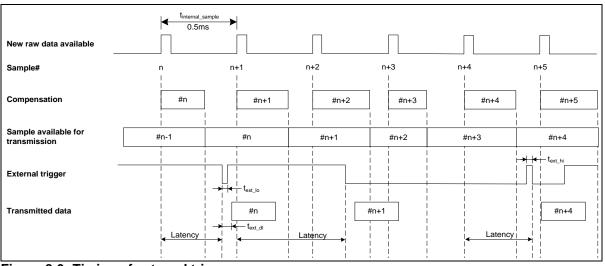



Figure 8-3: Timing of external trigger

#### 8.3 Time of Validity (TOV)

The TOV-output serves 2 purposes:

- Provide a synchronization-signal derived from the internal clock of STIM320
- Provide means to signal when a datagram is being transmitted (NB: not when configured to external trigger)

The TOV falling edge occurs synchronous to the sample rate. The raising edge occurs after the last bit of the datagram has been transmitted.

Figure 8-4 and Figure 8-5 show the timing diagram of the TOV-output.

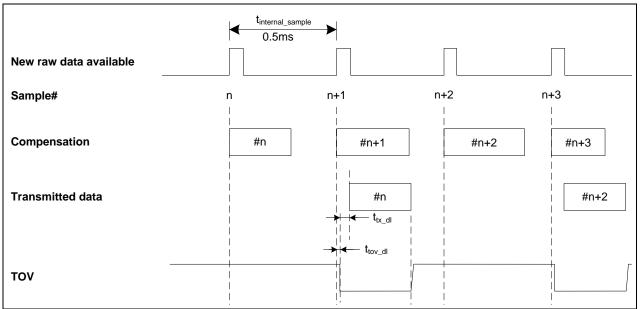



Figure 8-4: Timing of TOV (example: sample rate = 1000samples/s)





### STIM320 Inertia Measurement Unit

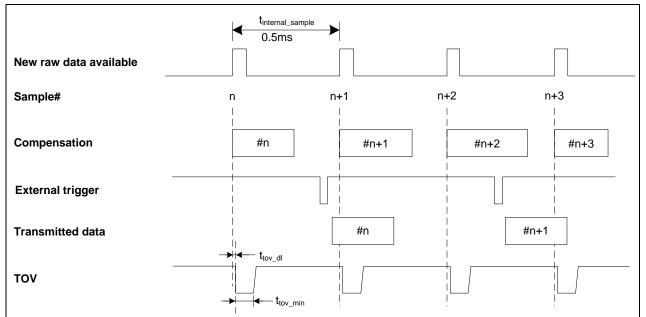



Figure 8-5: Timing of TOV with external trigger



DATASHEET

ButterflyGyro<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 8.4 PPS

The STIM320 provides functionality to detect a transition of or sample a PPS signal. The PPS part of the Normal Mode datagram (ref. section 6.3.6) can be activated by choosing a datagram containing PPS data (ref. sections 10.4, 11.4.5 and 13).

The PPS data can be represented either as "Time since detection" or as "PPS filtered".

#### 8.4.1 Time since detection

If the output unit of PPS has been set to "Time since detection of 0" or "Time since detection of 1" (ref. sections 10.4, 11.4.5 and 13), the STIM320 will be configured to give an internal interrupt when a transition  $(1 \rightarrow 0 \text{ or } 0 \rightarrow 1)$  is detected in order to record the time at which the transition occurred.

"Time since detection of 0" will detect a transition from 1 -> 0. "Time since detection of 1" will detect a transition from 0 -> 1.

Every time a datagram is transmitted, the time since detection of the transition will be calculated and transmitted, ref: Figure 8-6 for definition of "Time since detection".

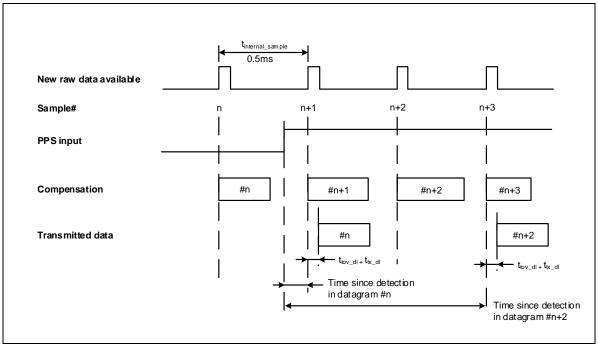



Figure 8-6: PPS sampling when output unit "Time since detection of 1"

If the time since detection becomes longer than what can be transmitted  $(2^{23}-1\mu s \text{ or approximately 8.4s})$ , the time since detection will remain at the maximum value but with the overload bit (bit 4) set in the PPS status byte, ref. sections 6.3.6 and 6.4.

The conversion of PPS data to [µs] can be found in section 8.6.2.2.11.



DATASHEET

ButterflyGyro<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 8.4.2 Filtered PPS

If the output unit of PPS has been set to "Filtered PPS" (ref. sections 10.4 and 13), the PPS input will be sampled at 32kHz and sent through the same type of CIC-filter as for the gyros and accelerometers. The LP filter -3dB frequency can be changed in SERVICEMODE, ref. section 10.8.

As the group delay of digitizing the PPS-signal is different from the gyros and accelerometers, a "Filtered PPS – delayed" option is available, see section 8.6.2.2.1.

The conversion of PPS data to [0, 1] can be found in section 8.6.2.2.12.

#### 8.5 Counter and Counter Restart Signal (CRS)

An internal counter is implemented which continuously counts the internal samples (2000 samples/s). The counter is 16-bits and takes values in the interval [0, 65535]. The counter will naturally wrap-around with no error-message indication in the Status-byte. The counter can also be set to restart at lower values than 65535 in SERVICEMODE, ref. section 10.15 and 11.4.10.

Depending on the datagram chosen (ref. sections 10.4 and 13), the counter is transmitted as 8 bits (the least significant bits of the counter) or full 16 bits. If the counter interval is higher than 256 and a datagram with an 8 bit counter-value has been chosen, the counter will naturally wrap at n x 256 (n is a positive integer) and then restart when the 16 bits counter reaches the defined interval.

The CRS outputs a pulse every time the counter restarts from 0. A timing diagram is shown in Figure 8-7:

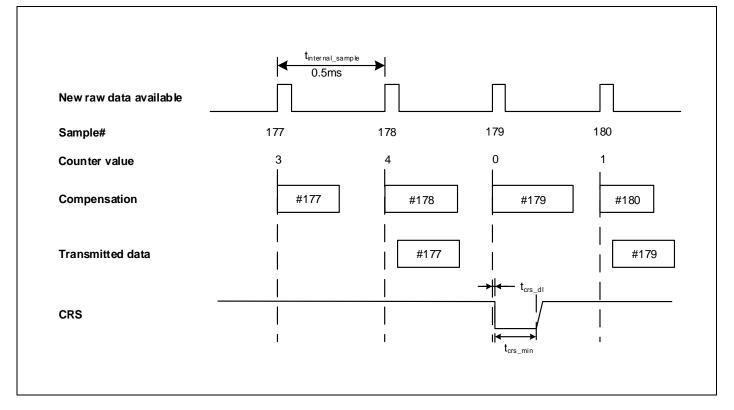
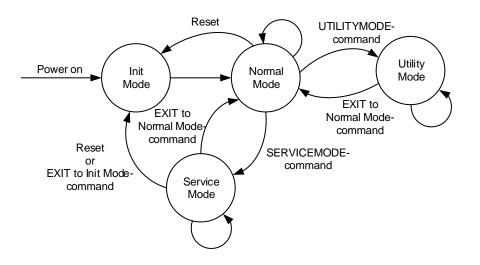



Figure 8-7: Timing of CRS (example: sample rate = 1000 samples/s, counter interval = 5)




DATASHEET

ButterflyGyro<sup>™</sup>

### 8.6 Operating modes

The operating modes of STIM320 are shown in Figure 8-8:



### Figure 8-8: Operating modes

#### 8.6.1 Init Mode

Init Mode is entered after the following conditions:

- power on
- after an external reset
- when receiving a reset-command in Normal Mode
- when exiting to Init Mode from Service Mode.

In Init Mode the system waits for internal references to settle, resets and synchronizes the sensor channels and transmits four special datagrams containing part number, serial number, configuration data and bias trim offsets. Note that length and format of the special datagrams are different to the datagrams in Normal Mode.

The content and format of the Part Number datagram is specified in Table 6-9.

The content and format of the Serial Number datagram is specified in Table 6-10.

The content and format of the Configuration datagram is specified in Table 6-11.

The content and format of the Bias Trim Offset datagram is specified in Table 6-12.

After having transmitted the special Part Number, Serial Number, Configuration and Bias Trim Offset datagrams, STIM320 enters Normal Mode.

All these special datagrams can also be requested by commands in Normal Mode, ref. section: 9.

### 8.6.2 Normal Mode

In Normal Mode STIM320 will constantly transmit sensor-data at the configured sample rate. The internal sample rate will always be at the maximum regardless of the transmitted sample rate.

STIM320 will continue to transmit data regardless of any errors reported in the STATUS-bytes (ref. Table 6-18). Hence the content of the STATUS-byte should continuously be examined.

The content of the Normal Mode datagram is specified in Table 6-15.



DATASHEET

ButterflyGyro<sup>™</sup>

## 8.6.2.1 Start-Up

When STIM320 enters Normal Mode from Init Mode, there will be a start-up period where STIM320 is stabilizing the gyros. During this period bit 6 is set in the STATUS-byte (ref. Table 6-18) to communicate its condition. Once stabilized, bit 6 will be cleared. During this period the output data should be regarded as non-valid.

There will not be any start-up period when STIM320 is exiting from Service Mode directly to Normal Mode.

### 8.6.2.2 Data output options and interpretation

The gyros in STIM320 measure angular rate [°/s] and the accelerometers measure acceleration [g]. However, in order to make the STIM320 more versatile, a few simple functions are offered, ref. Table 8-1 and Table 8-2:

| Table 8-1: Impl | emented functions for gyro output u | units |
|-----------------|-------------------------------------|-------|
| Function        | Description of function             |       |

| Function    | Description of function                                                                                                                                                                                                                                                      | Equation                                                                                                                                                   | Output unit |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Incremental | Adds all internal samples between<br>two transmissions multiplied by the<br>time between internal samples                                                                                                                                                                    | $Incremental = \sum_{i=1}^{n} AngularRate_{i} \cdot \frac{1}{2000}s$                                                                                       | [°]         |
|             |                                                                                                                                                                                                                                                                              | n = 2000 / sample rate                                                                                                                                     |             |
| Average     | Calculates the average of the internal samples between two transmissions                                                                                                                                                                                                     | $Average = \frac{1}{n} \cdot \sum_{i=1}^{n} AngularRate_{i}$                                                                                               | [°/s]       |
|             |                                                                                                                                                                                                                                                                              | n = 2000 / sample rate                                                                                                                                     |             |
| Integrated  | Adds all internal samples multiplied<br>by the time between internal<br>samples since start-up / last reset.<br>Note that the result takes values in<br>the interval [-4°, 4°> and will<br>naturally wrap-around with no error-<br>message indication in the Status-<br>byte | $Integrated = \sum_{i=1}^{n} AngularRate_{i} \cdot \frac{1}{2000}s$<br>n = internal samples (at a rate of 2000 samples/s)<br>since start-up or last reset) | [°]         |

### Table 8-2: Implemented functions for accelerometer output units

| Function    | Description of function                                                                                                                                                                                                                                                                             | Equation                                                                                                                                                                                                     | Output unit |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Incremental | Adds all internal samples between<br>two transmissions multiplied by the<br>time between internal samples and<br>converted to [m/s]                                                                                                                                                                 | $Incremental = k_0 \cdot \sum_{i=1}^{n} Acceleration_i \cdot \frac{1}{2000}s$ $k_0 = 9.80665 \text{ m/s}^2/\text{g}$ $n = 2000 / \text{ sample rate}$                                                        | [m/s]       |
| Average     | Calculates the average of the internal samples between two transmissions                                                                                                                                                                                                                            | $Average = \frac{1}{n} \cdot \sum_{i=1}^{n} Acceleration_i$<br>n = 2000 / sample rate                                                                                                                        | [d]         |
| Integrated  | Adds all internal samples multiplied<br>by the time between internal<br>samples since start-up / last reset.<br>Note that the result takes values in<br>a specific interval as described in<br>8.6.2.2.10 and will naturally wrap-<br>around with no error-message<br>indication in the Status-byte | $Integrated = k_0 \cdot \sum_{i=1}^{n} Acceleration_i \cdot \frac{1}{2000}s$<br>$k_0 = 9.80665 \text{ m/s}^2/\text{g}$<br>n = internal samples (at a rate of 2000 samples/s)<br>since start-up or last reset | [m/s]       |



DATASHEET

# STIM320 Inertia Measurement Unit

### 8.6.2.2.1 Delayed gyro output

The inherent group delay of the gyro-, accelerometer and PPS-signals are different, ref. Table 6-3 and Table 6-4 for gyro and accelerometers respectively.

As the group delay for the accelerometers is the longest, options are available to delay the gyro signals and/or PPS signal by 1.0ms in order for the group delay of signals to be similar. To enable this feature, select one of the " – delayed" output-units for gyro and/or PPS, ref. section 10.7 and 13.

#### 8.6.2.2.2 Gyro output unit = Angular Rate

In the case of STIM320 being configured to output angular rate, the equations for conversion to [°/s] can be found in Equation 1 and Figure 8-9. Note that the output data is represented as two's complement.

#### Equation 1: Converting output to [°/s]:

 $Output[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3) - (AR_{b23}) \cdot 2^{24}}{2^{14}}$ 

where AR<sub>1</sub> is the most significant byte of the 24bit output AR<sub>2</sub> is the middle byte of the 24bit output AR<sub>3</sub> is the least significant byte of the 24bit output AR<sub>b23</sub> is the most significant bit of AR<sub>1</sub>

| -              |                |                | – AR           | 1 —            |        |                |                | •              |                |                 | – AR            | 2               |                 |                 |                 | •               |                 |                 | - AR₃            |                  |                  |                  |                  |
|----------------|----------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|
| Bit 23         | Bit 22         | Bit 21         | Bit 20         | Bit 19         | Bit 18 | Bit 17         | Bit 16         | Bit 15         | Bit 14         | Bit 13          | Bit 12          | Bit 11          | Bit 10          | Bit 9           | Bit 8           | Bit 7           | Bit 6           | Bit 5           | Bit 4            | Bit 3            | Bit 2            | Bit 1            | Bit 0            |
| 2 <sup>9</sup> | 2 <sup>8</sup> | 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 24     | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> | 2 <sup>-1</sup> | 2 <sup>-2</sup> | 2 <sup>-3</sup> | 2 <sup>-4</sup> | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2 <sup>-7</sup> | 2 <sup>-8</sup> | 2 <sup>-9</sup> | 2 <sup>-10</sup> | 2 <sup>-11</sup> | 2 <sup>-12</sup> | 2 <sup>-13</sup> | 2 <sup>-14</sup> |

Figure 8-9: Converting output bytes to [°/s]

### 8.6.2.2.3 Gyro output unit = Incremental Angle

In the case of STIM320 being configured to output incremental angle per sample, the equations for conversion to [°/sample] can be found in Equation 2 and Figure 8-10. Note that the output data is represented as two's complement.

#### Equation 2: Converting output to [°/sample]

$$Output[\circ/sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3) - (IA_{b23}) \cdot 2^{24}}{2^{21}}$$

where  $IA_1$  is the most significant byte of the 24bit output  $IA_2$  is the middle byte of the 24bit output  $IA_3$  is the least significant byte of the 24bit output  $IA_{b23}$  is the most significant bit of  $IA_1$ 

|                |                |        | – IA <sub>1</sub> |        |                 |                 |                 | •               |                 |                 | – IA <sub>2</sub> |                  |        |                  | -                | •                |                  |                  | - IA <sub>3</sub> |                  |                  |                  |                  |
|----------------|----------------|--------|-------------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|------------------|--------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|
| Bit 23         | Bit 22         | Bit 21 | Bit 20            | Bit 19 | Bit 18          | Bit 17          | Bit 16          | Bit 15          | Bit 14          | Bit 13          | Bit 12            | Bit 11           | Bit 10 | Bit 9            | Bit 8            | Bit 7            | Bit 6            | Bit 5            | Bit 4             | Bit 3            | Bit 2            | Bit 1            | Bit 0            |
| 2 <sup>2</sup> | 2 <sup>1</sup> | 20     | 2 <sup>-1</sup>   | 2-2    | 2 <sup>-3</sup> | 2 <sup>-4</sup> | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2 <sup>-7</sup> | 2 <sup>-8</sup> | 2 <sup>-9</sup>   | 2 <sup>-10</sup> | 2-11   | 2 <sup>-12</sup> | 2 <sup>-13</sup> | 2 <sup>-14</sup> | 2 <sup>-15</sup> | 2 <sup>-16</sup> | 2 <sup>-17</sup>  | 2 <sup>-18</sup> | 2 <sup>-19</sup> | 2 <sup>-20</sup> | 2 <sup>-21</sup> |

#### Figure 8-10: Converting output bytes to [°/sample]

### 8.6.2.2.4 Gyro output unit = Average Angular Rate

In the case of STIM320 being configured to output average angular rate, the transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sample rate of 500Hz, each transmission will contain the average of the four previous internal samples.

Note that the configured low-pass filtering is performed prior to calculating the average.

Conversion to [°/s] is the same as for angular rate and is described in Equation 1.



DATASHEET

ButterflyGyro<sup>™</sup>

### 8.6.2.2.5 Gyro output unit = Integrated Angle

In the case of STIM320 being configured to output integrated angle, the transmitted data will be the continuously integrated angle since power-on or reset. The integrated angle will be in the interval [-4°, 4°> and will naturally wrap-around with no error-message indication in the Status-byte.

Conversion to [°] is the same as for incremental angle and is described in Equation 2.

#### 8.6.2.2.6 Gyro g-compensation

As the STIM320 also contains accelerometers, functionality has been implemented to provide means to compensate for the g-sensitivity for gyro scale-factor and/or bias.

In addition, a simple 1-pole low-pass filter can be switched in to apply additional filtering of the accelerometer-signal prior to use in the compensation, ref: Figure 8-12. A simplified compensation-scheme can be found in Figure 8-11.

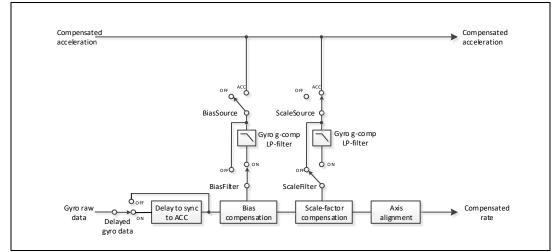



Figure 8-11: Simplified compensation-scheme for gyro g-compensation

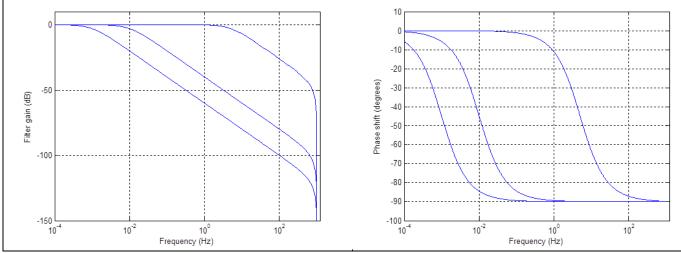



Figure 8-12: Frequency characteristics of g-compensation low-pass filter for 0.001Hz, 0.01Hz and 5Hz settings



DATASHEET



#### 8.6.2.2.7 Accelerometer output unit = Acceleration

In the case of STIM320 being configured to output acceleration, the equations for conversion to [g] can be found in Equation 3 and Figure 8-13. Note that the output data is represented as two's complement.

## Equation 3: Converting output to [g]:

| Range | Conversion:                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------|
| 10g   | $Output[g] = \frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3) - (ACC_{b23}) \cdot 2^{24}}{2^{19}}$ |
| •     | 219                                                                                                        |

where ACC1 is the most significant byte of the 24bit output

ACC3 is the least significant byte of the 24bit output

ACC<sub>b23</sub> is the most significant bit of ACC<sub>1</sub>

| -      |                |                | – ACC          | ;<br>1 ——      |        |        |                 | •               |                 |                 | – ACC  | 2               |                 |                  | -                | •                |                  |                  | ACC              | 3 —              |                  |                  |                  |
|--------|----------------|----------------|----------------|----------------|--------|--------|-----------------|-----------------|-----------------|-----------------|--------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Bit 23 | Bit 22         | Bit 21         | Bit 20         | Bit 19         | Bit 18 | Bit 17 | Bit 16          | Bit 15          | Bit 14          | Bit 13          | Bit 12 | Bit 11          | Bit 10          | Bit 9            | Bit 8            | Bit 7            | Bit 6            | Bit 5            | Bit 4            | Bit 3            | Bit 2            | Bit 1            | Bit 0            |
| 24     | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> | 2-1    | 2-2    | 2 <sup>-3</sup> | 2 <sup>-4</sup> | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2-7    | 2 <sup>-8</sup> | 2 <sup>-9</sup> | 2 <sup>-10</sup> | 2 <sup>-11</sup> | 2 <sup>-12</sup> | 2 <sup>-13</sup> | 2 <sup>-14</sup> | 2 <sup>-15</sup> | 2 <sup>-16</sup> | 2 <sup>-17</sup> | 2 <sup>-18</sup> | 2 <sup>-19</sup> |

Figure 8-13: Converting output bytes to [g] (example is valid for 10g range)

### 8.6.2.2.8 Accelerometer output unit = Incremental Velocity

In the case of STIM320 being configured to output incremental velocity per sample, the equations for conversion to [m/s/sample] can be found in Equation 4 and Figure 8-14. Note that the output data is represented as two's complement.

#### Equation 4: Converting output to [m/s/sample]

| Range | Conversion:                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------|
| 10g   | $Output[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3) - (IV_{b23}) \cdot 2^{24}}{2^{22}}$ |

where IV<sub>1</sub> is the most significant byte of the 24bit output

IV<sub>2</sub> is the middle byte of the 24bit output

IV<sub>3</sub> is the least significant byte of the 24bit output

IV<sub>b23</sub> is the most significant bit of IV<sub>1</sub>

| -              |        |        | – IV <sub>1</sub> |                 |        |                 |                 | -               |                 |                 | – IV <sub>2</sub> |        |                  |                  | •                | •                |                  |                  | - IV <sub>3</sub> |                  |                  |                  |                  |
|----------------|--------|--------|-------------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|
| Bit 23         | Bit 22 | Bit 21 | Bit 20            | Bit 19          | Bit 18 | Bit 17          | Bit 16          | Bit 15          | Bit 14          | Bit 13          | Bit 12            | Bit 11 | Bit 10           | Bit 9            | Bit 8            | Bit 7            | Bit 6            | Bit 5            | Bit 4             | Bit 3            | Bit 2            | Bit 1            | Bit 0            |
| 2 <sup>1</sup> | 20     | 2-1    | 2-2               | 2 <sup>-3</sup> | 2-4    | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2 <sup>-7</sup> | 2 <sup>-8</sup> | 2 <sup>-9</sup> | 2 <sup>-10</sup>  | 2-11   | 2 <sup>-12</sup> | 2 <sup>-13</sup> | 2 <sup>-14</sup> | 2 <sup>-15</sup> | 2 <sup>-16</sup> | 2 <sup>-17</sup> | 2 <sup>-18</sup>  | 2 <sup>-19</sup> | 2 <sup>-20</sup> | 2 <sup>-21</sup> | 2 <sup>-22</sup> |

Figure 8-14: Converting output bytes to [m/s/sample] (example is valid for 10g range)

### 8.6.2.2.9 Accelerometer output unit = Average Acceleration

In the case of STIM320 being configured to output average acceleration, the transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sample rate of 500Hz, each transmission will contain the average of the four internal samples.

Conversion to [g] is the same as for acceleration and is described in Equation 3.

ACC<sub>2</sub> is the middle byte of the 24bit output



DATASHEET

# STIM320 Inertia Measurement Unit

#### 8.6.2.2.10 Accelerometer output unit = Integrated Velocity

In the case of STIM320 being configured to output integrated velocity, the transmitted data will be the continuously integrated velocity since power-on or reset. The integrated velocity will be in the interval as shown in Table 8-3 and will naturally wrap-around with no error-message indication in the Status-byte.

### Table 8-3: Interval for integrated velocity

| Range | Interval:     |
|-------|---------------|
| 10g   | [-2m/s, 2m/s> |

Conversion to [m/s] is the same as for incremental velocity and is described in Equation 4.

## 8.6.2.2.11 PPS output unit = Time since detection

In the case of STIM320 being configured to "Time since detection of 0" or "Time since detection of 1", the equation for conversion to  $[\mu s]$  can be found in Equation 5 and Figure 8-15. Note that the output data is represented as two's complement.

### Equation 5: Converting output to [µs]:

 $Output[\mu s] = (PPS_1) \cdot 2^{16} + (PPS_2) \cdot 2^8 + (PPS_3) - (PPS_{h^{23}}) \cdot 2^{24}$ 

where  $PPS_1$  is the most significant byte of the 24bit output  $PPS_2$  is the middle byte of the 24bit output  $PPS_3$  is the least significant byte of the 24bit output

PPS<sub>b23</sub> is the most significant bit of PPS<sub>1</sub>

| -               |                 |                 | – PPS           | i —             |                 |                 |                 | ◄               |                 |                 | - PPS           | 2               |                 |                |                | •              |                |                | - PPS          | 3 —            |                |                |                |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Bit 2           | Bit 22          | Bit 21          | Bit 20          | Bit 19          | Bit 18          | Bit 17          | Bit 16          | Bit 15          | Bit 14          | Bit 13          | Bit 12          | Bit 11          | Bit 10          | Bit 9          | Bit 8          | Bit 7          | Bit 6          | Bit 5          | Bit 4          | Bit 3          | Bit 2          | Bit 1          | Bit 0          |
| 2 <sup>23</sup> | 2 <sup>22</sup> | 2 <sup>21</sup> | 2 <sup>20</sup> | 2 <sup>19</sup> | 2 <sup>18</sup> | 2 <sup>17</sup> | 2 <sup>16</sup> | 2 <sup>15</sup> | 2 <sup>14</sup> | 2 <sup>13</sup> | 2 <sup>12</sup> | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

Figure 8-15: Converting output bytes to [µs]

### 8.6.2.2.12 PPS output unit = Filtered PPS

In the case of STIM320 being configured to "Filtered PPS", the equation for conversion can be found in Equation 6 and Figure 8-16. The output will take values in the range [0, 1].

### Equation 6: Converting output to []:

$$Output[] = \frac{(PPS_1) \cdot 2^{16} + (PPS_2) \cdot 2^8 + (PPS_3)}{2^{22}}$$

where  $PPS_1$  is the most significant byte of the 24bit output  $PPS_2$  is the middle byte of the 24bit output  $PPS_3$  is the least significant byte of the 24bit output

| -      |        |        | – PPS           | 5 <sub>1</sub> — |                 |                 |                 | ◄      |                 |                 | – PPS            | 2      |                  |                  |                  | •                |                  |                  | - PPS            | 3 —              |                  |                  |                  |
|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-----------------|--------|-----------------|-----------------|------------------|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Bit 23 | Bit 22 | Bit 21 | Bit 20          | Bit 19           | Bit 18          | Bit 17          | Bit 16          | Bit 15 | Bit 14          | Bit 13          | Bit 12           | Bit 11 | Bit 10           | Bit 9            | Bit 8            | Bit 7            | Bit 6            | Bit 5            | Bit 4            | Bit 3            | Bit 2            | Bit 1            | Bit 0            |
| 21     | 20     | 2-1    | 2 <sup>-2</sup> | 2 <sup>-3</sup>  | 2 <sup>-4</sup> | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2-7    | 2 <sup>-8</sup> | 2 <sup>.9</sup> | 2 <sup>-10</sup> | 2-11   | 2 <sup>-12</sup> | 2 <sup>-13</sup> | 2 <sup>-14</sup> | 2 <sup>-15</sup> | 2 <sup>-16</sup> | 2 <sup>-17</sup> | 2 <sup>-18</sup> | 2 <sup>-19</sup> | 2 <sup>-20</sup> | 2 <sup>-21</sup> | 2 <sup>-22</sup> |

### Figure 8-16: Converting output bytes to []



DATASHEET

STIM320 Inertia Measurement Unit

### 8.6.2.2.13 Temperature

Temperature data for each axis is available in certain datagrams (ref. section 13).

Equation 7 and Figure 8-17 show how to convert to [°C]. Note that the output data is represented as two's complement.

## Equation 7: Converting temperature data to [°C]

 $Output[^{\circ}C] = \frac{(T_1) \cdot 2^8 + (T_2) - (T_{b15}) \cdot 2^{16}}{2^8}$ 

where  $T_1$  is the most significant byte of the 16bit output  $T_2$  is the least significant byte of the 16bit output  $T_{b15}$  is the most significant byte of  $T_1$ 

| •      |                |                | – T <sub>1</sub> |                |                |                |                | ◀               |       |                 | - T <sub>2</sub> |                 |                 |       |       |
|--------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|-----------------|-------|-----------------|------------------|-----------------|-----------------|-------|-------|
| Bit 15 | Bit 14         | Bit 13         | Bit 12           | Bit 11         | Bit 10         | Bit 9          | Bit 8          | Bit 7           | Bit 6 | Bit 5           | Bit 4            | Bit 3           | Bit 2           | Bit 1 | Bit 0 |
| 27     | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup>   | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> | 2 <sup>-1</sup> | 2-2   | 2 <sup>-3</sup> | 2-4              | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2-7   | 2-8   |

Figure 8-17: Converting temperature data to [°C]

#### 8.6.2.2.14 Counter

Counter is un-signed and consists of 1 or 2 bytes depending of the chosen datagram.

If counter is 2 bytes, the counter can be calculated as shown in Equation 8 and Figure 8-18:

#### Equation 8: Converting counter to an integer number:

 $Output = (Counter_1) \cdot 2^8 + (Counter_2)$ 

where Counter<sub>1</sub> is the most significant byte of the counter Counter<sub>2</sub> is the least significant byte of the counter

|                 |                 |                 | Coun            | ter₁ —          |                 |                |                | •     |                |                | Count          | er <sub>2</sub> — |                |                | ►              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|-------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|
| Bit 15          | Bit 14          | Bit 13          | Bit 12          | Bit 11          | Bit 10          | Bit 9          | Bit 8          | Bit 7 | Bit 6          | Bit 5          | Bit 4          | Bit 3             | Bit 2          | Bit 1          | Bit 0          |
| 2 <sup>15</sup> | 2 <sup>14</sup> | 2 <sup>13</sup> | 2 <sup>12</sup> | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | 27    | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup>    | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

Figure 8-18: Converting counter to an integer number

### 8.6.2.2.15 Latency

To calculate the latency in [µs], refer to Equation 9 and Figure 8-19. Note that latency is an unsigned word.

### Equation 9: Converting output to [µs]:

 $Output[\mu s] = (LT_1) \cdot 2^8 + (LT_2)$ 

- where  $LT_1$  is the most significant byte of the 16bit output
  - LT2 is the least significant byte of the 16bit output

| - | •               |                 |                 | – LT <sub>1</sub> |                 |                 |                |                | •              |                |                | - LT <sub>2</sub> |                |                |                |                |
|---|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|
|   | Bit 15          | Bit 14          | Bit 13          | Bit 12            | Bit 11          | Bit 10          | Bit 9          | Bit 8          | Bit 7          | Bit 6          | Bit 5          | Bit 4             | Bit 3          | Bit 2          | Bit 1          | Bit 0          |
|   | 2 <sup>15</sup> | 2 <sup>14</sup> | 2 <sup>13</sup> | 2 <sup>12</sup>   | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup>    | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

Figure 8-19: Converting output bytes to [µs]



DATASHEET



### 8.6.2.3 Bias Trim Offset

The STIM320 offers the possibility to trim the biases by adding or subtracting user-defined offsets to the individual sensor signals. Adjusting the bias trim offsets can be done by entering Bias Trim Offset Mode (ref. section 8.6.4) or Service Mode (ref. section 10).

The bias trim offsets are applied to the sensor-signals after the compensation-algorithms with the sign-convention as shown in Equation 10:

#### Equation 10: Applying bias trim offsets:

Sensor<sub>adjusted</sub> = Sensor<sub>compensated</sub> + BiasTrimOffset

where Sensor<sub>adjusted</sub> is the sensor-data to be transmitted Sensor<sub>compensated</sub> is the sensor-data after compensation

BiasTrimOffset is the current bias trim offset for the particular sensor axis

Note that the bias trim offset is in [°/s] for the gyros and [g] for the accelerometers. This is also the case if the chosen output unit is incremental or integrated.

#### 8.6.3 Service Mode

In Service Mode the communication interface is human readable and hence the communication format (ASCII) supports the use of terminal-based software during the development phase, when the configuration of a device needs to be changed or during investigations into an observed problem.

When Service Mode is entered, STIM320 will respond with its configuration information (same as the response to the <u>i</u> (INFORMATION) command, ref: Figure 10-1).

A set of commands are available, ref. Section 10, enabling the user to change intermediately or permanently the configuration parameters, display latest measurement results, display higher details on error information and perform a full diagnostic of the unit.

In Service Mode the gyro measurements will still be running in the background, enabling to switch directly back to Normal Mode without the need for any stabilization time of filters, etc. However the measurement data itself, when STIM320 is in Service Mode are not transmitted and therefore lost. By using the <u>a</u> (SINGLE-SHOT MEASUREMENT) command (ref. Section 10.2) it is possible to display single measurement results.

Exiting Service Mode can be done in several ways:

- Using the external reset. This will force STIM320 into Init Mode. Be advised that during Init Mode, all the configuration parameters are loaded from flash. If any of the configuration parameters have been changed during the Service Mode session but not saved to flash, these changes will be overwritten by the content already stored in flash.
- 2. Using the <u>x</u> (EXIT) command. When using this command a parameter is required to decide whether the device should go to Init Mode or to Normal Mode. When exiting to Normal Mode, any of the changes made to the configuration parameters will still be valid. However, if not saved, the configuration parameters will be overwritten by the content already stored in flash at the next power-up or reset.

### 8.6.4 Utility Mode

The Utility Mode is similar to Service Mode (ref. section 8.6.3) but made for machine-machine communication. All commands and responses includes CRC-8 to detect any errors in the communication.

After having received the "UTILITYMODE"-command (ref. section 9.8), STIM320 will stop transmitting Normal Mode datagrams and send an acknowledgement that it is now in Utility Mode (ref. section 11.1). Even though the Normal Mode datagrams are not transmitted, the measurements will continue in the background.

Several commands are available to obtain information or change configuration parameters, ref. section 11.

When the Utility Mode is exited, the STIM320 will return to Normal Mode and resume transmission of Normal Mode datagrams.



DATASHEET

# STIM320 Inertia Measurement Unit

### 8.7 Self-diagnostics

STIM320 is continuously checking its internal status. The checks include:

- Check of internal references
- o Check of sensors (error and overload)
- Check of internal temperatures
- $\circ \quad \text{Check of RAM and flash}$
- Check of supply voltage

A full diagnostic can be run to see the result of the individual checks by using the <u>c</u> (DIAGNOSTIC) command, ref. Section 10.3 in SERVICEMODE.

When an error situation is detected, the corresponding bit in the STATUS byte (ref. Table 6-18) will be set. If the sample-rate is set lower than 2000 samples/s, the STATUS byte will reflect the accumulated status of all the sub-samples between two data transmissions. The bits in the STATUS bytes are valid for the data in a single transmission and hence not latched.

Access to extended error registers containing accumulated error-information can be achieved either by using the Normal Mode-command "E" (EXTENDED ERROR INFORMATION DATAGRAM, ref. section 9.5 and Table 6-14) or the SERVICEMODE-command <u>ie</u> (INFORMATION on ACCUMULATED LAST ERRORS, ref. section 10.1).

The extended error registers are cleared at the following events:

- After the start-up phase, triggered by power-on or reset
- After transmission of Extended Error Information Datagram (ref. section 9.5)
- After use of SERVICEMODE-command "i e" (INFORMATION on ACCUMULATED LAST ERRORS, ref. section 10.1)





# STIM320 Inertia Measurement Unit

#### 9 COMMANDS IN NORMAL MODE

Several commands are available in Normal Mode, as listed in Table 9-1. Note that all commands in Normal Mode must be transmitted in upper case letters.

#### Table 9-1 Available commands in Normal Mode

| Command     | Short description                                 |  |  |  |
|-------------|---------------------------------------------------|--|--|--|
| Ν           | Transmits one Part Number datagram                |  |  |  |
| I           | Transmits one Serial Number datagram              |  |  |  |
| С           | C Transmits one Configuration datagram            |  |  |  |
| Т           | Transmits one Bias Trim Offset datagram           |  |  |  |
| E           | Transmits one Extended Error Information datagram |  |  |  |
| R           | Resets the unit                                   |  |  |  |
| SERVICEMODE | Enters Service Mode                               |  |  |  |
| UTILITYMODE | Enters Utility Mode                               |  |  |  |

#### Table 9-2 List of special ASCII characters used in Normal Mode

| Char      | Hex  | Dec | Short description                                           |
|-----------|------|-----|-------------------------------------------------------------|
| <cr></cr> | 0x0D | 13  | "Carriage Return": used as execution character for commands |

No echo of received command characters or error messages will appear for these commands. Only at the receipt of the complete correct command, will STIM320 execute accordingly.

NB: if OUTPUT-UNIT is set to INCREMENTAL (ref. Section 10.7), the transmitted incremented value in the datagram following any of the requested special datagrams will NOT contain the incremental value since the last transmitted measurement. Hence the incremented value(s) occurring during the transmission of a special requested datagram will be lost.

### 9.1 N (PART NUMBER DATAGRAM) command

General description: Requests transmission of a Part Number datagram (ref. Table 6-9).

#### Table 9-3 : Available I (PART NUMBER DATAGRAM) command

| Syntax      | Response                           |
|-------------|------------------------------------|
| N <cr></cr> | Transmits one Part Number datagram |

The Part Number datagram will replace the next transmitted Normal Mode datagram. If the Part Number datagram is longer than the chosen Normal Mode datagram, the Part Number datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Part Number datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data.

### 9.2 I (SERIAL NUMBER DATAGRAM) command

General description: Requests transmission of a Serial number datagram (ref. Table 6-10).

#### Table 9-4 : Available I (SERIAL NUMBER DATAGRAM) command

| Syntax      | Response                             |
|-------------|--------------------------------------|
| I <cr></cr> | Transmits one Serial Number datagram |

The Serial Number datagram will replace the next transmitted Normal Mode datagram. If the Serial Number datagram is longer than the chosen Normal Mode datagram, the Serial Number datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Serial Number datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data.



DATASHEET

# STIM320 Inertia Measurement Unit

#### 9.3 C (CONFIGURATION DATAGRAM) command

General description: Requests transmission of a Configuration datagram (ref. Table 6-11).

#### Table 9-5: Available C (CONFIGURATION DATAGRAM) command

| Response                             |
|--------------------------------------|
| Transmits one Configuration datagram |
|                                      |

The Configuration datagram will replace the next transmitted Normal Mode datagram. If the Configuration datagram is longer than the chosen Normal Mode datagram, the Configuration datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Configuration datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data.

#### 9.4 T (BIAS TRIM OFFSET DATAGRAM) command

General description: Requests transmission of a Bias Trim Offset datagram (ref. Table 6-12).

#### Table 9-6: Available B (BIAS TRIM OFFSET DATAGRAM) command

| Syntax      | Response                                |
|-------------|-----------------------------------------|
| T <cr></cr> | Transmits one Bias Trim Offset datagram |

The Bias Trim Offset datagram will replace the next transmitted Normal Mode datagram. If the Bias Trim Offset datagram is longer than the chosen Normal Mode datagram, the Configuration datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Bias Trim Offset datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data.

#### 9.5 E (EXTENDED ERROR INFORMATION DATAGRAM) command

General description: Requests transmission of an Extended Error Information datagram (ref. Table 6-13). This datagram contains the accumulated detected errors (ref. section 8.7).

Once the Extended Error Information datagram has been transmitted, the error-registers are cleared.

#### Table 9-7: Available E (EXTENDED ERROR INFORMATION) command

| Syntax      | Response                                          |
|-------------|---------------------------------------------------|
| E <cr></cr> | Transmits one Extended Error Information datagram |

The Extended Error Information datagram will replace the next transmitted Normal Mode datagram. If the Extended Error Information datagram is longer than the chosen Normal Mode datagram, the Extended Error Information datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Extended Error Information datagram will be transmitted at the next external trigger input, replacing the datagram containing sensor data.

#### 9.6 R (RESET) command

General description: Force a Reset

#### Table 9-8: Available R (RESET) command

| Syntax      | Response        |
|-------------|-----------------|
| R <cr></cr> | Resets the unit |



DATASHEET



### 9.7 SERVICEMODE command

General description: Enters Service Mode (ref. section 8.6.2.3).

#### Table 9-9: Available SERVICEMODE command

| Syntax                | Response            |
|-----------------------|---------------------|
| SERVICEMODE <cr></cr> | Enters Service Mode |

If the command is received during the transmission of a datagram, it will complete the transmission before entering Service Mode.

When entering Service Mode, the configuration and identification data of the device will be listed, as shown in Figure 9-1:



ButterflyGyro<sup>™</sup>

# STIM320 Inertia Measurement Unit

| SERIAL NUMBER = N25582026002002                           |
|-----------------------------------------------------------|
| PRODUCT = STIM320                                         |
| PART NUMBER = 85042-440010-D30 REV -                      |
| FW CONFIG = SWD12409 REV 0                                |
| GYRO OUTPUT UNIT = [°/s] – ANGULAR RATE DELAYED           |
| ACCELEROMETER OUTPUT UNIT = $[g]$ – ACCELERATION          |
| PPS OUTPUT UNIT = [us] TIME SINCE DETECTION OF 1          |
| SAMPLE RATE [samples/s] = 2000                            |
| GYRO CONFIG = XYZ                                         |
| ACCELEROMETER CONFIG = XYZ                                |
| GYRO RANGE:                                               |
| X-AXIS: ± 400°/s                                          |
| Y-AXIS: ± 400%                                            |
| Z-AXIS: ± 400°/s                                          |
| ACCELEROMETER RANGE:                                      |
| X-AXIS: ± 10g                                             |
|                                                           |
| Y-AXIS: ± 10g                                             |
|                                                           |
| GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262          |
| GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262          |
| GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262          |
| ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262 |
| ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262 |
| ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262 |
| PPS LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262           |
| GYRO G-COMPENSATION:                                      |
| BIAS SOURCE, X-AXIS = OFF                                 |
| BIAS G-COMP LP-FILTER, X-AXIS = NA                        |
| SCALE SOURCE, X-AXIS = ACC                                |
| SCALE G-COMP LP-FILTER, X-AXIS = OFF                      |
| BIAS SOURCE, Y-AXIS = OFF                                 |
| BIAS G-COMP LP-FILTER, Y-AXIS = NA                        |
| SCALE SOURCE, Y-AXIS = ACC                                |
| SCALE G-COMP LP-FILTER, Y-AXIS = OFF                      |
| BIAS SOURCE, Z-AXIS = OFF                                 |
| BIAS G-COMP LP-FILTER, Z-AXIS = NA                        |
| SCALE SOURCE, Z-AXIS = ACC                                |
| SCALE G-COMP LP-FILTER, Z-AXIS = OFF                      |
| G-COMP LP-FILTER CUTOFF = 0.010 HZ                        |
| BIAS TRIM OFFSET:                                         |
| GYRO X-AXIS [°/s ] = 0.02343                              |
| GYRO Y-AXIS [°/s ] = -0.01222                             |
| GYRO Z-AXIS [°/s ] = 0.00111                              |
| ACCELEROMETER X-AXIS [g] = -0.004256                      |
| ACCELEROMETER Y-AXIS [g] = -0.013777                      |
| ACCELEROMETER Z-AXIS [g ] = 0.000111                      |
| REFERENCE INFO = 43639                                    |
| DATAGRAM = RATE, ACCELERATION, PPS, 16 BITS COUNTER       |
| DATAGRAM TERMINATION = NONE                               |
| BIT-RATE [bits/s] = 921600                                |
| DATA LENGTH = 8                                           |
| STOP BITS = 1                                             |
| PARITY = NONE                                             |
| LINE TERMINATION = ON                                     |
| SYSTEM CONFIGURATIONS:                                    |
| COUNTER INTERVAL: [0, 65535]                              |
|                                                           |
|                                                           |

Figure 9-1: Example of response from SERVICEMODE command



DATASHEET

ButterflyGyro™

# STIM320 Inertia Measurement Unit

### 9.8 UTILITYMODE command

General description: Enters Utility Mode allowing the user to obtain information or change configuration parameters (ref. section 8.6.4).

#### Table 9-10: Available UTILITYMODE command

| Syntax                | Response            |
|-----------------------|---------------------|
| UTILITYMODE <cr></cr> | Enters Utility Mode |

If the command is received during the transmission of a datagram, it will complete the transmission before entering Utility Mode.

For response to the UTILITYMODE command and other commands in Utility Mode, see section 11.





# STIM320 Inertia Measurement Unit

### 10 COMMANDS IN SERVICE MODE

Several commands are available in Service Mode, as listed in Table 10-1. Note that all commands in Service Mode are case-sensitive (commands are lower case letters, whilst some parameters may be capital case letters).

#### Table 10-1 Available commands in Service Mode

| Command | Short description                                                                 |
|---------|-----------------------------------------------------------------------------------|
| i       | Lists specific information (e.g. serial number, configuration, error information) |
| а       | Performs a single-shot measurement                                                |
| С       | Performs a diagnostic of the unit                                                 |
| d       | Changes datagram format                                                           |
| t       | Changes transmission parameters (e.g. bit-rate, data-length, stop-bits)           |
| r       | Turns line termination ON or OFF                                                  |
| u       | Changes measurement output unit                                                   |
| f       | Changes LP filter -3dB frequency                                                  |
| m       | Changes sample rate                                                               |
| g       | Changes the gyro g-compensation configuration for bias and scale factor           |
| b       | Changes bias trim offsets                                                         |
| S       | Saves configuration data                                                          |
| х       | Exits Service Mode and returns to Normal Mode or Init Mode                        |
| Z       | Restore to factory settings                                                       |
| h       | Changes defined system configurations                                             |
| ?       | Help function on the available commands in Service Mode                           |

## Table 10-2 List of special ASCII characters used in Service Mode

| Char      | Hex  | Dec | Short description                                                             |
|-----------|------|-----|-------------------------------------------------------------------------------|
| <bs></bs> | 0x08 | 8   | "Back Space": deletes last received character (received since last <cr>)</cr> |
| <cr></cr> | 0x0D | 13  | "Carriage Return": typically used as execution character for commands         |
| <sp></sp> | 0x20 | 32  | "Space": used to separate command and first parameter                         |
| ۲, ۱<br>۲ | 0x2C | 44  | "Comma": used to separate parameters in a command                             |
| '>'       | 0x3E | 62  | Used together with <cr> as: "Ready to receive new command"-prompt</cr>        |

When STIM320 is in Service Mode and ready to receive a new command, it will issue the special ASCII character <CR> followed by '>'. As some commands (e.g. SINGLE-SHOT MEASUREMENT-command) may respond with a varying number of lines, automated set-ups should look for the special prompt-sequence (<CR>+'>') before issuing a new command.

Received characters will be echoed. A command is decoded and executed when receiving the special ASCII character <CR>. <BS> ("back-space") is also recognised and will delete the last received character in the input buffer. The size of the input buffer is 80 characters. <BS> is valid for the characters received since last <CR>.

The command-character and first parameter (when applicable) are separated by a space (character 0x20). When there are more than one parameter to a command (e.g. TRANSMISSION PARAMETER-command), these must be separated by a comma (character 0x2C).

In the event of an unknown command, inconsistent syntax or incorrect value of parameter(s), STIM320 will respond with an error message. Error messages are on the format:

E<nnn><SP><Error description><CR>

where nnn is an error number.





# STIM320 Inertia Measurement Unit

## 10.1 i (INFORMATION) command

General description: Lists various requested information about the device

#### Table 10-3 : Available i (INFORMATION) commands

| Syntax                          | Response                                                |
|---------------------------------|---------------------------------------------------------|
| i <cr></cr>                     | Lists the product configuration and identification data |
| i <sp><cmd><cr></cr></cmd></sp> | Gives information about the specific parameter          |

### Table 10-4 : Allowed values for <cmd> parameter for i (INFORMATION) commands

| <cmd></cmd> | Result                                                                                        |  |
|-------------|-----------------------------------------------------------------------------------------------|--|
| S           | Returns the serial number of the device                                                       |  |
| n           | Returns the product name of the device                                                        |  |
| X           | Returns the part number of the device                                                         |  |
| а           | Returns the axis configuration of the device                                                  |  |
| р           | Returns the FW configuration and revision of the device                                       |  |
| m           | Returns the sample rate of the device                                                         |  |
| f           | Returns the LP filter -3dB frequency for each axis                                            |  |
| d           | Returns the datagram format                                                                   |  |
| t           | Returns the transmission parameters of the device                                             |  |
| r           | Returns the line termination (ON or OFF)                                                      |  |
| u           | Returns the output units of the device                                                        |  |
| g           | Returns the configuration of the gyro g-compensation                                          |  |
| b           | Returns the bias trim offsets                                                                 |  |
| е           | Prints the extended error information from the accumulated detected error(s) since last error |  |
|             | read-out in Service Mode or by the E-command in Normal Mode (ref. section 9.5)                |  |
| h           | Returns the settings of the defined system configurations                                     |  |

## Table 10-5: Error messages for i (INFORMATION) commands

| Error | Message                           | Possible reason                                                                     |
|-------|-----------------------------------|-------------------------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND                   | Command or parameter is not recognised                                              |
| E002  | INCORRECT NUMBER OF<br>PARAMETERS | Too many or too few parameters, use of comma between<br>command and first parameter |
| E003  | INVALID PARAMETER                 | Value of parameter outside valid range                                              |



>i

# DATASHEET



# STIM320 Inertia Measurement Unit

SERIAL NUMBER = N25582026002002 PRODUCT = STIM320 PART NUMBER = 85042-440010-D30 REV -FW CONFIG = SWD12409 REV 0 GYRO OUTPUT UNIT = [°/s] - ANGULAR RATE DELAYED ACCELEROMETER OUTPUT UNIT = [g] - ACCELERATION PPS OUTPUT UNIT = [us] TIME SINCE DETECTION OF 1 SAMPLE RATE [samples/s] = 2000 GYRO CONFIG = XYZ ACCELEROMETER CONFIG = XYZ GYRO RANGE: X-AXIS: ± 400°/s Y-AXIS: ± 400°/s Z-AXIS: ± 400°/s ACCELEROMETER RANGE: X-AXIS: ± 10q Y-AXIS: ± 10g Z-AXIS: ± 10g GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262 GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262 GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262 PPS LP FILTER -3dB FREQUENCY [Hz] = 262 GYRO G-COMPENSATION: BIAS SOURCE. X-AXIS = OFF BIAS G-COMP LP-FILTER, X-AXIS = NA SCALE SOURCE, X-AXIS = ACC SCALE G-COMP LP-FILTER, X-AXIS = OFF BIAS SOURCE, Y-AXIS = OFF BIAS G-COMP LP-FILTER, Y-AXIS = NA SCALE SOURCE, Y-AXIS = ACC SCALE G-COMP LP-FILTER, Y-AXIS = OFF BIAS SOURCE, Z-AXIS = OFF BIAS G-COMP LP-FILTER, Z-AXIS = NA SCALE SOURCE, Z-AXIS = ACC SCALE G-COMP LP-FILTER, Z-AXIS = OFF G-COMP LP-FILTER CUTOFF = 0.010 HZ BIAS TRIM OFFSET: GYRO X-AXIS [°/s ] = 0.02343 GYRO Y-AXIS [°/s ] = -0.01222 GYRO Z-AXIS [°/s ] = 0.00111 ACCELEROMETER X-AXIS [g] = -0.004256 ACCELEROMETER Y-AXIS [g] = -0.013777 ACCELEROMETER Z-AXIS [g] = 0.000111 REFERENCE INFO = 43639 DATAGRAM = RATE, ACCELERATION, PPS, 16 BITS COUNTER DATAGRAM TERMINATION = NONE BIT-RATE [bits/s] = 921600 DATA LENGTH = 8 STOP BITS = 1 PARITY = NONE LINE TERMINATION = ON SYSTEM CONFIGURATIONS: COUNTER INTERVAL: [0, 65535]

Figure 10-1: Example of response from i (INFORMATION) command



>i s

>

>i x

>

# DATASHEET



STIM320 Inertia Measurement Unit

SERIAL NUMBER = N25582026002002

### Figure 10-2: Example of response from i s (INFORMATION on SERIAL NUMBER) command

>i n PRODUCT = STIM320

Figure 10-3: Example of response from in (INFORMATION on PRODUCT NAME) command

PART NUMBER = 85042-440010-D30 REV -

#### Figure 10-4: Example of response from i x (INFORMATION on PART NUMBER) command

>i a GYRO CONFIG = XYZ ACCELEROMETER CONFIG = XYZ GYRO RANGE: X-AXIS: ± 400°/s Y-AXIS: ± 400°/s Z-AXIS: ± 400°/s ACCELEROMETER RANGE: X-AXIS: ± 10g Y-AXIS: ± 10g Z-AXIS: ± 10g

Figure 10-5: Example of response from i a (INFORMATION on AXIS CONFIGURATION) command

>i p FW CONFIG = SWD12409 REV 0

Figure 10-6: Example of response from i p (INFORMATION on FW CONFIGURATION) command



>i f GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262 GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262 GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262 ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262 PPS LP FILTER -3dB FREQUENCY [Hz] = 262

Figure 10-8: Example of response from i f (INFORMATION on LP FILTER -3dB FREQUENCY) command



ButterflyGyro<sup>™</sup>

# STIM320 Inertia Measurement Unit

>i d

DATAGRAM = RATE, ACCELERATION, PPS, 16-BITS COUNTER DATAGRAM TERMINATION = NONE

>

>

Figure 10-9: Example of response from i d (INFORMATION on DATAGRAM TRANSMISSION MODE AND TERMINATION) command

>i t BIT-RATE [bits/s] = 921600 DATA LENGTH = 8 STOP BITS = 1 PARITY = NONE

Figure 10-10: Example of response from it (INFORMATION on TRANSMISSION PARAMETERS) command

>i r LINE TERMINATION = ON

## Figure 10-11: Example of response from i r (INFORMATION on LINE TERMINATION) command

>i u GYRO OUTPUT UNIT = [°/s] – ANGULAR RATE DELAYED ACCELEROMETER OUTPUT UNIT = [g] – ACCELERATION PPS OUTPUT UNIT = [us] – TIME SINCE DETECTION OF 1

Figure 10-12: Example of response from i u (INFORMATION on OUTPUT UNIT) command

>i g GYRO G-COMPENSATION: BIAS SOURCE, X-AXIS = OFF BIAS G-COMP LP-FILTER, X-AXIS = NA SCALE SOURCE, X-AXIS = ACC SCALE G-COMP LP-FILTER, X-AXIS = OFF BIAS SOURCE, Y-AXIS = OFF BIAS G-COMP LP-FILTER, Y-AXIS = NA SCALE SOURCE, Y-AXIS = ACC SCALE G-COMP LP-FILTER, Y-AXIS = OFF BIAS SOURCE, Z-AXIS = OFF BIAS G-COMP LP-FILTER, Z-AXIS = NA SCALE SOURCE, Z-AXIS = ACC SCALE G-COMP LP-FILTER, Z-AXIS = OFF G-COMP LP-FILTER, Z-AXIS = OFF G-COMP LP-FILTER, Z-AXIS = OFF

Figure 10-13: Example of response from i g (INFORMATION on GYRO G-COMP) command





STIM320 Inertia Measurement Unit

| >i b                                 |
|--------------------------------------|
| BIAS TRIM OFFSET:                    |
| GYRO X-AXIS [°/s ] = 0.02343         |
| GYRO Y-AXIS [°/s ] = -0.01222        |
| GYRO Z-AXIS [°/s ] = 0.00111         |
| ACCELEROMETER X-AXIS [g] = -0.004256 |
| ACCELEROMETER Y-AXIS [g] = -0.013777 |
| ACCELEROMETER Z-AXIS [g] = 0.000111  |
| REFERENCE INFO = 43639               |
|                                      |
|                                      |

Figure 10-14: Example of response from i b (INFORMATION on BIAS TRIM OFFSET) command

GYRO Z-AXIS NO CLIPPING DETECTED = FAIL

LAST ERROR HISTORY IS NOW CLEARED

Figure 10-15: Example of response from i e (INFORMATION on ACCUMULATED LAST ERRORS) command

>i e NO ERRORS DETECTED

>i e

>

Figure 10-16: Example of response from i e (INFORMATION on ACCUMULATED LAST ERRORS) command

>i h SYSTEM CONFIGURATIONS: COUNTER INTERVAL: [0, 65535]

Figure 10-17: Example of response from i h (INFORMATION on SYSTEM CONFIGURATIONS) command



DATASHEET

ButterflyGyro™

# STIM320 Inertia Measurement Unit

## 10.2 a (SINGLE-SHOT MEASUREMENT) command

General description: Displays the result of latest measurement (measurement process running constantly in the background).

NB: SINGLE-SHOT MEASUREMENT-command is not available if SAMPLE RATE is set to External Trigger.

#### Table 10-6: Available a (SINGLE-SHOT MEASUREMENT) command

| Syntax      | Response                                             |
|-------------|------------------------------------------------------|
| a <cr></cr> | Displays the result of the latest measurement sample |

#### Table 10-7: Error messages for a (SINGLE-SHOT MEASUREMENT) command

| Error | Message             | Possible reason                              |
|-------|---------------------|----------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered               |
| E002  | INCORRECT NUMBER OF | Any characters between command and <cr></cr> |
|       | PARAMETERS          |                                              |

| >a                                   |
|--------------------------------------|
| GYRO X-AXIS = 1.43253 °/s            |
| GYRO Y-AXIS = 2.34525 °/s            |
| GYRO Z-AXIS = 243.33628 °/s          |
| GYRO STATUS = 00000000 = OK          |
|                                      |
| ACCELEROMETER X-AXIS = 0.042113 g    |
| ACCELEROMETER Y-AXIS = 0.000342 g    |
| ACCELEROMETER Z-AXIS = 0.929376 g    |
| ACCELEROMETER STATUS = 00000000 = OK |
|                                      |
| TEMPERATURE GYRO X-AXIS = 32.326 °C  |
| TEMPERATURE GYRO Y-AXIS = 32.467 °C  |
| TEMPERATURE GYRO Z-AXIS = 32.265 °C  |
| TEMPERATURE STATUS = 00000000 = OK   |
|                                      |
| TEMPERATURE ACC X-AXIS = 32.846 °C   |
| TEMPERATURE ACC Y-AXIS = 32.477 °C   |
| TEMPERATURE ACC Z-AXIS = 32.965 °C   |
| TEMPERATURE STATUS = 00000000 = OK   |
|                                      |
| PPS = 612 us                         |
| PPS STATUS = 00000000 = OK           |
| COUNTER = 10                         |
| LATENCY = 516 us                     |
| LATENOT = 310 05                     |
|                                      |
| >                                    |

Figure 10-18: Example of response from a (SINGLE-SHOT MEASUREMENT) command



DATASHEET



| >a                                   |
|--------------------------------------|
| GYRO X-AXIS = 0.00071 °/s            |
| GYRO Y-AXIS = 0.12324 °/s            |
| GYRO Z-AXIS = 480.00000 °/s          |
| GYRO STATUS = 00010100 = NOT OK      |
| BIT 4: OVERLOAD                      |
| BIT 2: ERROR IN Z-CHANNEL            |
|                                      |
| ACCELEROMETER X-AXIS = 0.042113 g    |
| ACCELEROMETER Y-AXIS = 0.000342 g    |
| ACCELEROMETER Z-AXIS = 0.929376 g    |
| ACCELEROMETER STATUS = 00000000 = OK |
|                                      |
| TEMPERATURE GYRO X-AXIS = 32.326 °C  |
| TEMPERATURE GYRO Y-AXIS = 32.467 °C  |
| TEMPERATURE GYRO Z-AXIS = 32.265 °C  |
| TEMPERATURE STATUS = 00000000 = OK   |
|                                      |
| TEMPERATURE ACC X-AXIS = 32.846 °C   |
| TEMPERATURE ACC Y-AXIS = 32.477 °C   |
| TEMPERATURE ACC Z-AXIS = 32.965 °C   |
| TEMPERATURE STATUS = 00000000 = OK   |
|                                      |
| PPS = 612  us                        |
| PPS STATUS = 00000000 = OK           |
|                                      |
| COUNTER = 10                         |
| LATENCY = 516 us                     |

Figure 10-19: Example of response from a (SINGLE-SHOT MEASUREMENT) command with error flagging



DATASHEET



## 10.3 c (DIAGNOSTIC) command

General description: Performs a diagnostic of the unit.

## Table 10-8: Available c (DIAGNOSTIC) command

| Syntax      | Response                    |
|-------------|-----------------------------|
| c <cr></cr> | Performs a diagnostic check |

#### Table 10-9: Error messages for c (DIAGNOSTIC) command

| Error | Message             | Possible reason                              |
|-------|---------------------|----------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered               |
| E002  | INCORRECT NUMBER OF | Any characters between command and <cr></cr> |
|       | PARAMETERS          |                                              |

|   | SERIAL NUMBER = N25582026002002                                                       |        |
|---|---------------------------------------------------------------------------------------|--------|
|   | PRODUCT = STIM320                                                                     |        |
|   | PART NUMBER = 85042-440010-D30 REV -                                                  |        |
|   | HW CONFIG = M5728 REV 9                                                               |        |
|   | FW CONFIG = SWD12409 REV 0                                                            |        |
|   | SYSTEM STATUS:                                                                        |        |
|   | RAM CHECK = OK                                                                        |        |
|   | FLASH CHECK = OK                                                                      |        |
|   | STACK STATUS MONITOR = OK                                                             |        |
|   | STACK COMMAND HANDLER = OK                                                            |        |
|   | STACK SAMPLE = OK                                                                     |        |
|   | STACK FLASH = OK                                                                      |        |
|   | STACK TRANSMIT = $OK$                                                                 |        |
|   | MICRO CONTROLLER TEMPERATURE = OK                                                     |        |
|   | START-UP PHASE = NOT ACTIVE                                                           |        |
|   | SELF-TEST RUNNING = OK                                                                |        |
|   | UART = OK                                                                             |        |
|   | VOLTAGES AND REFERENCES:                                                              |        |
|   | REFERENCE VOLTAGE_1 = FAIL                                                            |        |
|   | REFERENCE VOLTAGE_2 = OK                                                              |        |
|   | REFERENCE VOLTAGE_3 = OK                                                              |        |
|   | REFERENCE VOLTAGE_4 = OK                                                              |        |
|   | REGULATED VOLTAGE_1 = OK                                                              |        |
|   | REGULATED VOLTAGE_2 = OK                                                              |        |
|   | REGULATED VOLTAGE_3 = OK                                                              |        |
|   | SUPPLY VOLTAGE 5.0V = OK                                                              |        |
|   | INTERNAL DAC = OK                                                                     |        |
|   | GYRO X-AXIS:                                                                          |        |
|   | GYRO X-AXIS DATA RECEIVED = OK                                                        |        |
|   | GYRO X-AXIS EXCITATION FREQUENCY = OK                                                 |        |
|   | GYRO X-AXIS ASIC TEMPERATURE = OK                                                     |        |
|   | GYRO X-AXIS TEMPERATURE = OK                                                          |        |
|   | GYRO X-AXIS NO CLIPPING DETECTED = OK                                                 |        |
|   | GYRO X-AXIS NO OVERLOAD DETECTED = OK                                                 |        |
|   | GYRO X-AXIS INTERNAL COMMUNICATION = OK                                               |        |
|   | GYRO X-AXIS NO ASIC OVERFLOW DETECTED = OK                                            |        |
|   | GYRO X-AXIS EXCITATION AMPLITUDE = OK                                                 |        |
|   | GYRO X-AXIS CONFIGURATION = OK                                                        |        |
|   | GYRO Y-AXIS:                                                                          |        |
|   | GYRO Y-AXIS DATA RECEIVED = OK                                                        |        |
|   | GYRO Y-AXIS EXCITATION FREQUENCY = OK                                                 |        |
|   | GYRO Y-AXIS ASIC TEMPERATURE = OK                                                     |        |
|   | GYRO Y-AXIS TEMPERATURE = OK                                                          |        |
|   | GYRO Y-AXIS NO CLIPPING DETECTED = OK<br>GYRO Y-AXIS NO OVERLOAD DETECTED = OK        |        |
|   | GYRO Y-AXIS NO OVERLOAD DETECTED = OK<br>GYRO Y-AXIS INTERNAL COMMUNICATION = OK      |        |
|   | GYRO Y-AXIS INTERNAL COMMUNICATION = OK<br>GYRO Y-AXIS NO ASIC OVERFLOW DETECTED = OK |        |
|   | GYRO Y-AXIS EXCITATION AMPLITUDE = OK                                                 |        |
|   | GYRO Y-AXIS CONFIGURATION = OK                                                        |        |
|   | GYRO Z-AXIS:                                                                          |        |
|   | GYRO Z-AXIS DATA RECEIVED = OK                                                        |        |
|   | GYRO Z-AXIS EXCITATION FREQUENCY = OK                                                 |        |
|   | GYRO Z-AXIS ASIC TEMPERATURE = OK                                                     |        |
|   | GYRO Z-AXIS TEMPERATURE = OK                                                          |        |
|   | GYRO Z-AXIS NO CLIPPING DETECTED = OK                                                 |        |
|   | GYRO Z-AXIS NO OVERLOAD DETECTED = OK                                                 |        |
|   | GYRO Z-AXIS INTERNAL COMMUNICATION = OK                                               |        |
|   | GYRO Z-AXIS NO ASIC OVERFLOW DETECTED = OK                                            |        |
| _ |                                                                                       |        |
| T | C1665 rov 2                                                                           | 50/100 |





# STIM320 Inertia Measurement Unit

| GYRO Z-AXIS EXCITATION AMPLITUDE = OK          |
|------------------------------------------------|
| GYRO Z-AXIS CONFIGURATION = OK                 |
| ACCELEROMETER X-AXIS:                          |
| ACCELEROMETER X-AXIS NO CLIPPING DETECTED = OK |
| ACCELEROMETER X-AXIS NO OVERLOAD DETECTED = OK |
| ACCELEROMETER X-AXIS TEMPERATURE = OK          |
| ACCELEROMETER X-AXIS ADC = OK                  |
| ACCELEROMETER Y-AXIS:                          |
| ACCELEROMETER Y-AXIS NO CLIPPING DETECTED = OK |
| ACCELEROMETER Y-AXIS NO OVERLOAD DETECTED = OK |
| ACCELEROMETER Y-AXIS TEMPERATURE = OK          |
| ACCELEROMETER Y-AXIS ADC = OK                  |
| ACCELEROMETER Z-AXIS:                          |
| ACCELEROMETER Z-AXIS NO CLIPPING DETECTED = OK |
| ACCELEROMETER Z-AXIS NO OVERLOAD DETECTED = OK |
| ACCELEROMETER Z-AXIS TEMPERATURE = OK          |
| ACCELEROMETER Z-AXIS ADC = OK                  |
| PPS:                                           |
| PPS TIME OVERFLOW = OK                         |
|                                                |
| >                                              |
|                                                |

## Figure 10-20: Example of response from c (DIAGNOSTIC) command



DATASHEET

# STIM320 Inertia Measurement Unit

## 10.4 d (DATAGRAM FORMAT) command

General description: Sets the datagram transmission mode and termination (ref. Table 6-7 and section 13).

Note that the datagram format could be considered invalid, even if it has been entered correctly. This is because a valid datagram format also depends on the chosen sample rate and bit rate (ref. Table 6-8 and error message E007 in Table 10-13).

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-10 : Available d (DATAGRAM FORMAT) command

| Syntax                                            | Response                                                              |  |
|---------------------------------------------------|-----------------------------------------------------------------------|--|
| d <sp><type>','<term><cr></cr></term></type></sp> | Changes the datagram transmission mode and termination in Normal Mode |  |

# Table 10-11 : Allowed values for <type> parameter of d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

| <type></type> | Datagram content                                                        |  |
|---------------|-------------------------------------------------------------------------|--|
| 0             | ID, rate, 8-bits counter, latency, CRC                                  |  |
| 1             | ID, rate, acceleration, 8-bits counter, latency, CRC                    |  |
| 4             | ID, rate, temperature, 8-bits counter, latency, CRC                     |  |
| 5             | ID, rate, acceleration, temperature, 8-bits counter, latency, CRC       |  |
| 8             | ID, rate, 16-bits counter, latency, CRC                                 |  |
| 9             | ID, rate, acceleration, 16-bits counter, latency, CRC                   |  |
| а             | ID, rate, temperature, 16-bits counter, latency, CRC                    |  |
| b             | ID, rate, acceleration, temperature, 16-bits counter, latency, CRC      |  |
| С             | ID, rate, PPS, 16-bits counter, latency, CRC                            |  |
| d             | ID, rate, acceleration, PPS, 16-bits counter, latency, CRC              |  |
| e             | e ID, rate, temperature, PPS, 16-bits counter, latency, CRC             |  |
| f             | ID, rate, acceleration, temperature, PPS, 16-bits counter, latency, CRC |  |

# Table 10-12 : Allowed values for <term> parameter of d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

| <term></term> | Result                                                 |
|---------------|--------------------------------------------------------|
| 0             | Changes the datagram termination to no termination     |
| 1             | Changes the datagram termination to <cr><lf></lf></cr> |

#### Table 10-13: Error messages for d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

| Error | Message                   | Possible reason                                                   |
|-------|---------------------------|-------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND           | Command is incorrectly entered                                    |
| E002  | INCORRECT NUMBER OF       | Too many or too few parameters, use of comma between              |
|       | PARAMETERS                | command and first parameter                                       |
| E003  | INVALID PARAMETER         | Value of parameter outside valid range                            |
| E007  | DATAGRAM WILL BE TOO LONG | Combination of bit-rate, sample rate and datagram content results |
|       | TO TRANSMIT               | in a datagram that cannot be transmitted                          |

>d 4,0

DATAGRAM = RATE, TEMPERATURE, 8-BITS COUNTER DATAGRAM TERMINATION = NONE

>

#### Figure 10-21: Example of response from d (DATAGRAM MODE AND TERMINATION) command



ButterflyGyro<sup>™</sup>

# STIM320 Inertia Measurement Unit

>d c,1

DATAGRAM = RATE, PPS, 16-BITS COUNTER DATAGRAM TERMINATION = <CR><LF>

>

Figure 10-22: Example of response from d (DATATGRAM MODE AND TERMINATION) command



ButterflyGyro<sup>™</sup>

# STIM320 Inertia Measurement Unit

#### 10.5 t (TRANSMISSION PARAMETERS) command

General description: Changes the transmission parameters for the RS422 interface.

Note that the bit-rate could be considered invalid, even if it has been entered correctly. This is because a valid bit-rate also depends on the sample rate and chosen datagram content (ref. Table 6-8 and error message E007 in Table 10-18).

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). If confirmation to the SAVE-command is not "Y", the transmission parameters will be reset to the previously stored settings. In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-14 : Available t (TRANSMISSION PARAMETERS) commands

| Syntax                                                                                          | Response                                                  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| t <sp><bit-rate code=""><cr></cr></bit-rate></sp>                                               | Changes the transmission bit-rate and leaves number       |
|                                                                                                 | of stop-bits and parity unchanged                         |
| t <sp><bit-rate code="">','<stop-bits>','<parity><cr></cr></parity></stop-bits></bit-rate></sp> | Changes the transmission bit-rate, number of stop-bits    |
|                                                                                                 | and parity                                                |
| t <sp>'f,'<bit-rate><cr></cr></bit-rate></sp>                                                   | Changes the transmission bit-rate to a user-defined bit-  |
|                                                                                                 | rate and leaves number of stop-bits and parity            |
|                                                                                                 | unchanged, ref. section 10.5.1                            |
| t <sp>'f,'<bit-rate>','<stop-bits>','<parity><cr></cr></parity></stop-bits></bit-rate></sp>     | Changes the transmission bit-rate to a user-defined bit-  |
|                                                                                                 | rate, number of stop-bits and parity, ref. section 10.5.1 |

#### Table 10-15: Allowed values for <bit-rate code> parameter for t (TRANSMISSION PARAMETERS) commands

| <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | Result                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Will set the bit-rate to 374400 bits/s  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Will set the bit-rate to 460800 bits/s  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Will set the bit-rate to 921600 bits/s  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Will set the bit-rate to 1843200 bits/s |

#### Table 10-16: Allowed values for <stop-bits> parameter for t (TRANSMISSION PARAMETERS) commands

| <stop-bits></stop-bits> | Result                            |
|-------------------------|-----------------------------------|
| 1                       | Will set number of stop bits to 1 |
| 2                       | Will set number of stop bits to 2 |

#### Table 10-17: Allowed values for <parity> parameter for t (TRANSMISSION PARAMETERS) commands

| <parity></parity> | Result               |
|-------------------|----------------------|
| 0                 | Will set no parity   |
| 1                 | Will set odd parity  |
| 2                 | Will set even parity |

#### 10.5.1 User-defined bit-rate

The STIM320 hardware is capable of setting bit-rates in the range between 1500 and 5184000 bits/s. However, the sample rate and the datagram length decide the minimum bit-rate possible, ref. Equation 11:

### Equation 11: Minimum bit-rate

 $Bit - rate_{MIN} = 1.1 \cdot bits \cdot bytes \cdot sample_rate$ 

where bits = start-bit (1) + data-bits (8) + stop-bits (1 or 2) + parity-bit (0 or 1)
bytes = number of bytes in the chosen datagram, ref. Table 6-15 and Table 6-8 (NB: number of bytes in
Table 6-8 excludes <CR><LF>. If <CR><LF> termination has been chosen, ref. section 10.4
DATAGRAM FORMAT-command, the 2 additional bytes must be added)
sample\_rate is the chosen sample rate [samples/s]

If a bit-rate, lower than the allowed bit-rate defined by Equation 11, is entered, the command will respond with error message E007, ref. Table 10-18.

There are a finite number of bit-rates possible to set. This is defined in Equation 12:



DATASHEET



### Equation 12: Set bit-rate

 $Bit - rate_{SET} = \frac{82944000}{n} bits / s$ 

#### where n is an integer

The actually set bit-rate will hence be the closest to requested bit-rate. The response of the t (TRANSMISSION PARAMETERS)-command will be the set bit-rate. Be aware that for certain bit-rates above 1.5Mbit/s, the deviation between the requested bit-rate and set bit-rate could be larger than 1% and may be in conflict with the RS422 specification. No warnings are issued related to this issue. As a safety precaution, the new bit-rate can only be permanently set by using the s (SAVE)-command (using the new bit-rate).

#### Table 10-18: Error messages for t (TRANSMISSION PARAMETERS) commands

| Error | Message                   | Possible reason                                                   |
|-------|---------------------------|-------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND           | Command is incorrectly entered                                    |
| E002  | INCORRECT NUMBER OF       | Too many or too few parameters, use of comma between              |
|       | PARAMETERS                | command and first parameter                                       |
| E003  | INVALID PARAMETER         | Value of parameter outside valid range                            |
| E007  | DATAGRAM WILL BE TOO LONG | Combination of bit-rate, sample rate and datagram content results |
|       | TO TRANSMIT               | in a datagram that cannot be transmitted                          |

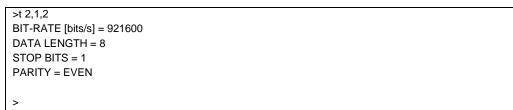



Figure 10-23: Example of response from t (TRANSMISSION PARAMETERS) command to set standard bit-rate

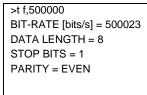



Figure 10-24: Example of response from t (TRANSMISSION PARAMETERS) command to set user-defined bitrate



DATASHEET

# STIM320 Inertia Measurement Unit

## 10.6 r (LINE TERMINATION) command

General description: Turns the line termination ON or OFF. Line termination should be ON when communicating pointpoint (single master - single slave).

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-19: Available r (LINE TERMINATION) command

| Syntax                                    | Response                     |
|-------------------------------------------|------------------------------|
| r <sp><lineterm><cr></cr></lineterm></sp> | Changes the line termination |

### Table 10-20: Allowed values for r (LINE TERMINATION) command

| <li>lineterm&gt;</li> | Result                     |  |
|-----------------------|----------------------------|--|
| 0                     | Turns line termination OFF |  |
| 1                     | Turns line termination ON  |  |

#### Table 10-21: Error messages for r (LINE TERMINATION) command

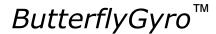
| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

LINE TERMINATION = OFF

>

## Figure 10-25: Example of response from r 0 (LINE TERMINATION) command

LINE TERMINATION = ON


>r 1

>

Figure 10-26: Example of response from r 1 (LINE TERMINATION) command



DATASHEET



## 10.7 u (OUTPUT UNIT) command

General description: Sets the output unit of the transmission in Normal Mode.

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-22: Available u (OUTPUT UNIT) command

| Syntax                                             | Response                                            |  |
|----------------------------------------------------|-----------------------------------------------------|--|
| u <sp>'<sens>','<unit><cr></cr></unit></sens></sp> | Changes the unit of the transmission in Normal Mode |  |

#### Table 10-23: Allowed values for <sens> and <unit> for u (OUTPUT UNIT) command

| <sens></sens> | <unit></unit> | Result                                                                     |  |
|---------------|---------------|----------------------------------------------------------------------------|--|
| g             | 0             | Changes the gyro output unit to angular rate [°/s]                         |  |
| g             | 1             | Changes the gyro output unit to incremental angle [°/sample]               |  |
| g             | 2             | Changes the gyro output unit to average angular rate [°/s]                 |  |
| g             | 3             | Changes the gyro output unit to integrated angle [°]                       |  |
| g             | 8             | Changes the gyro output unit to angular rate – delayed [°/s]               |  |
| g             | 9             | Changes the gyro output unit to incremental angle – delayed [°/sample]     |  |
| g             | а             | Changes the gyro output unit to average angular rate – delayed [°/s]       |  |
| g             | b             | Changes the gyro output unit to integrated angle – delayed [°]             |  |
| а             | 0             | Changes the accelerometer output unit to acceleration [g]                  |  |
| а             | 1             | Changes the accelerometer output unit to incremental velocity [m/s/sample] |  |
| а             | 2             | Changes the accelerometer output unit to average acceleration [g]          |  |
| а             | 3             | Changes the accelerometer output unit to integrated velocity [m/s]         |  |
| р             | 0             | Changes the PPS output unit to time since detection of 0                   |  |
| р             | 1             | Changes the PPS output unit to time since detection of 1                   |  |
| р             | 2             | Changes the PPS output unit to filtered PPS                                |  |
| р             | 3             | Changes the PPS output unit to filtered PPS – delayed                      |  |

#### Table 10-24: Error messages for u (OUTPUT UNIT) command

| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

>u g,0 GYRO OUTPUT UNIT = [°/s] – ANGULAR RATE >

## Figure 10-27: Example of response from u (OUTPUT UNIT) command

```
>u a,2
ACCELEROMETER OUTPUT UNIT = [g] – AVERAGE ACCELERATION
```

## Figure 10-28: Example of response from u (OUTPUT UNIT) command

```
>u p,2
PPS OUTPUT UNIT = [ ] – FILTERED PPS
```

## Figure 10-29: Example of response from u (OUTPUT UNIT) command



DATASHEET

# STIM320 Inertia Measurement Unit

## 10.8 f (LP FILTER -3dB FREQUENCY) command

General description: Changes the low-pass filter -3dB frequency for one or all axes.

Note that low pass filter settings should be considered together with sample rate in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM320 if e.g. a high filter bandwidth and a low sample rate have been chosen. For more details, see Application Note TS1670: "Considerations related to sampling rate and filter settings".

Note that change in filter setting will change the group delay, ref. Table 6-7.

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-25: Available f (LP FILTER -3dB FREQUENCY) commands

| Syntax                                                                | Response                                                               |
|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| f <sp>&lt;-3dBfreq&gt;<cr></cr></sp>                                  | Changes the LP filter -3dB frequency for all sensors and axes          |
| f <sp>&lt;-3dBfreq&gt;','<sens><cr></cr></sens></sp>                  | Changes the LP filter -3dB frequency for all axes of a specific sensor |
| f <sp>&lt;-3dBfreq&gt;',' <sens>','<axis><cr></cr></axis></sens></sp> | Changes the LP filter -3dB frequency for a specified sensor and axis   |

#### Table 10-26: Allowed values for <-3dBfreq> parameter for f (LP FILTER -3dB FREQUENCY) commands

| <-3dBfreq>                                      | Result                                        |  |
|-------------------------------------------------|-----------------------------------------------|--|
| 0                                               | Will change LP filter -3dB frequency to 16Hz  |  |
| 1                                               | Will change LP filter -3dB frequency to 33Hz  |  |
| 2                                               | Will change LP filter -3dB frequency to 66Hz  |  |
| 3 Will change LP filter -3dB frequency to 131Hz |                                               |  |
| 4                                               | Will change LP filter -3dB frequency to 262Hz |  |

#### Table 10-27: Allowed values for <sens> parameter for f (LP FILTER -3dB FREQUENCY) commands

| <sens></sens> | Result                                                        |  |
|---------------|---------------------------------------------------------------|--|
| g             | Will change LP filter -3dB frequency for the gyro(s)          |  |
| а             | Will change LP filter -3dB frequency for the accelerometer(s) |  |
| р             | Will change LP filter -3dB frequency for the PPS              |  |

#### Table 10-28: Allowed values for <axis> parameter for f (LP FILTER -3dB FREQUENCY) commands

| <axis></axis> | Result                                               |
|---------------|------------------------------------------------------|
| x             | Will change LP filter -3dB frequency for X-axis only |
| У             | Will change LP filter -3dB frequency for Y-axis only |
| z             | Will change LP filter -3dB frequency for Z-axis only |

#### Table 10-29: Error messages for f (LP FILTER -3dB FREQUENCY) commands

| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

>f 2,a,x

ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 66

**\** 

## Figure 10-30: Example of response from f (LP FILTER -3dB FREQUENCY) command







>f 3

GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 131 GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 131 GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 131 ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 131 ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 131 ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 131 PPS LP FILTER -3dB FREQUENCY [Hz] = 131

>

## Figure 10-31: Example of response from f (LP FILTER -3dB FREQUENCY) command

>f 1,g GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 33 GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 33 GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 33

>

Figure 10-32: Example of response from f (LP FILTER -3dB FREQUENCY) command

>f 0,p PPS LP FILTER -3dB FREQUENCY [Hz] = 16

Figure 10-33: Example of response from f (LP FILTER -3dB FREQUENCY) command



DATASHEET

# STIM320 Inertia Measurement Unit

### 10.9 m (SAMPLE RATE) command

General description: Changes the sample rate in Normal Mode. The sample rate is the same for all channels.

Note that the sample rate could be considered invalid, even if it has been entered correctly. This is because a valid sample rate also depends on the bit rate and chosen datagram content (ref. Table 6-8 and error message E007 in Table 10-32).

Note that sample rate should be considered together with filter settings in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM320 if e.g. a high filter bandwidth and a low sample rate have been chosen. For more details, see Application Note TS1670: "Considerations related to sampling rate and filter settings".

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.10). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-30: Available m (SAMPLE RATE) command

| Syntax                                        | Response                               |
|-----------------------------------------------|----------------------------------------|
| m <sp><sampl.rate><cr></cr></sampl.rate></sp> | Changes the sample rate in Normal Mode |

#### Table 10-31: Allowed values for <sampl.rate> parameter for m (SAMPLE RATE) command

| <sampl.rate></sampl.rate> | Result                                       |
|---------------------------|----------------------------------------------|
| 0                         | Will set sample rate to 125 samples /second  |
| 1                         | Will set sample rate to 250 samples /second  |
| 2                         | Will set sample rate to 500 samples /second  |
| 3                         | Will set sample rate to 1000 samples /second |
| 4                         | Will set sample rate to 2000 samples /second |
| 5                         | Will set sample to External Trigger          |

#### Table 10-32: Error messages for m (SAMPLE RATE) command

| Error | Message                   | Possible reason                                                   |
|-------|---------------------------|-------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND           | Command is incorrectly entered                                    |
| E002  | INCORRECT NUMBER OF       | Too many or too few parameters, use of comma between              |
|       | PARAMETERS                | command and first parameter                                       |
| E003  | INVALID PARAMETER         | Value of parameter outside valid range                            |
| E007  | DATAGRAM WILL BE TOO LONG | Combination of bit-rate, sample rate and datagram content results |
|       | TO TRANSMIT               | in a datagram that cannot be transmitted                          |

>m 2 SAMPLE RATE [samples/s] = 500

### Figure 10-34: Example of response from m (SAMPLE RATE) command

SAMPLE RATE = EXTERNAL TRIGGER

>

>m 5

#### Figure 10-35: Example of response from m (SAMPLE RATE) command



ButterflyGyro<sup>™</sup>

# STIM320 Inertia Measurement Unit

## 10.10 g (GYRO G-COMP) command

General description: Changes the compensation parameters for the gyro g-compensation of bias and/or scale-factor. Refer to section 8.6.2.2.6 for a description of this functionality.

| Syntax                                                                                                                                                                                                                                           | Response                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| g <sp><stdcomp><cr></cr></stdcomp></sp>                                                                                                                                                                                                          | Changes the gyro g-compensation to one of the defined<br>standard configurations. The cut-off frequency of the g-<br>compensation LP-filter will be set to 0.01Hz. Gyro g-<br>compensation will be applied to all axes. |
| g <sp><stdcomp>','<filtercutoff><cr></cr></filtercutoff></stdcomp></sp>                                                                                                                                                                          | Changes the gyro g-compensation to one of the defined<br>standard configurations, but sets the g-compensation LP-<br>filter to a non-standard cut-off frequency. Gyro g-<br>compensation will be applied to all axes.   |
| g <sp><biassource>','<biasfilter>','<br/><scalesource>','<scalefilter><cr></cr></scalefilter></scalesource></biasfilter></biassource></sp>                                                                                                       | Changes the gyro g-compensation to a user-defined gyro<br>g-compensation configuration, but leaves the g-<br>compensation LP-filter unchanged. Gyro g-compensation<br>will be applied to all axes.                      |
| g <sp><biassource>','<biasfilter>','<br/><scalesource>','<scalefilter>','<br/><filtercutoff><cr></cr></filtercutoff></scalefilter></scalesource></biasfilter></biassource></sp>                                                                  | Changes the gyro g-compensation to a user-defined gyro g-compensation configuration, including the g-<br>compensation LP-filter. Gyro g-compensation will be<br>applied to all axes.                                    |
| g <sp><xonoff>','<yonoff>','<zonoff>','<br/><biassource>','<biasfilter>','<br/><scalesource>','<scalefilter><cr></cr></scalefilter></scalesource></biasfilter></biassource></zonoff></yonoff></xonoff></sp>                                      | Changes the gyro g-compensation to a user-defined gyro<br>g-compensation configuration, but leaves the g-<br>compensation LP-filter unchanged. Gyro g-compensation<br>will be applied to specific axes.                 |
| g <sp><xonoff>','<yonoff>','<zonoff>','<br/><biassource>','<biasfilter>','<br/><scalesource>','<scalefilter>','<br/><filtercutoff><cr></cr></filtercutoff></scalefilter></scalesource></biasfilter></biassource></zonoff></yonoff></xonoff></sp> | Changes the gyro g-compensation to a user-defined gyro<br>g-compensation configuration, including the g-<br>compensation LP-filter. Gyro g-compensation will be<br>applied to specific axes.                            |

## Table 10-33: Available g (GYRO G-COMP) commands

### Table 10-34 : Allowed values for <StdComp> for g (GYRO G-COMP) command

|                     | Bias       |            | Scale-factor |             |
|---------------------|------------|------------|--------------|-------------|
| <stdcomp></stdcomp> | BiasSource | BiasFilter | ScaleSource  | ScaleFilter |
| 0                   | OFF        | -          | OFF          | -           |
| 1 <sup>1)</sup>     | OFF        | -          | ACC          | OFF         |
| 2                   | OFF        | -          | ACC          | ON          |
| 3 <sup>1)</sup>     | ACC        | OFF        | OFF          | -           |
| 4                   | ACC        | ON         | OFF          | -           |
| 7 <sup>1)</sup>     | ACC        | OFF        | ACC          | OFF         |
| 8 <sup>1)</sup>     | ACC        | ON         | ACC          | OFF         |
| b                   | ACC        | ON         | ACC          | ON          |

<sup>1)</sup> A warning will be issued if gyro output unit has not been chosen as delayed (ref. section 8.6.2.2.1 and 10.7)

#### Table 10-35 : Allowed range for <FilterCutoff> for g (GYRO G-COMP) command

|                                                                |                               | Unit | Minimum | Standard | Maximum |
|----------------------------------------------------------------|-------------------------------|------|---------|----------|---------|
|                                                                | <filtercutoff></filtercutoff> | Hz   | 0.001   | 0.01     | 5.00    |
| Decimal point = ' Format can be integer, scientific or decimal |                               |      |         |          |         |

#### Table 10-36 : Allowed values for <ScaleSource> and <BiasSource> for g (GYRO G-COMP) command

| <biassource><br/><scalesource></scalesource></biassource> | Result                                            |
|-----------------------------------------------------------|---------------------------------------------------|
| 0 Gyro g-compensation turned OFF                          |                                                   |
| 1                                                         | Gyro g-compensation uses data from accelerometers |



*ButterflyGyro*<sup>™</sup>

# STIM320 Inertia Measurement Unit

#### Table 10-37 : Allowed values for <ScaleFilter> and <BiasFilter> for g (GYRO G-COMP) command

| <biasfilter><br/><scalefilter></scalefilter></biasfilter> | Result                                          |
|-----------------------------------------------------------|-------------------------------------------------|
| 0                                                         | Gyro g-compensation LP-filter not applied (OFF) |
| 1                                                         | Gyro g-compensation LP-filter applied (ON)      |

#### Table 10-38 : Allowed values for <Xonoff>, <Yonoff> and <Zonoff> for g (GYRO G-COMP) command

| <xonoff><br/><yonoff><br/><zonoff></zonoff></yonoff></xonoff> | Result                                                    |
|---------------------------------------------------------------|-----------------------------------------------------------|
| 0                                                             | Gyro g-compensation is not applied to specific axis (OFF) |
| 1                                                             | Gyro g-compensation is applied to specific axis           |

#### Table 10-39: Error messages for g (GYRO G-COMP) command

| Error | r Message Possible reason |                                                      |
|-------|---------------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND           | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF       | Too many or too few parameters, use of comma between |
|       | PARAMETERS                | command and first parameter                          |
| E003  | INVALID PARAMETER         | Value of parameter outside valid range               |

| >g 1                                 |  |
|--------------------------------------|--|
| GYRO G-COMPENSATION:                 |  |
| BIAS SOURCE, X-AXIS = OFF            |  |
| BIAS G-COMP LP-FILTER, X-AXIS = NA   |  |
| SCALE SOURCE, X-AXIS = ACC           |  |
| SCALE G-COMP LP-FILTER, X-AXIS = OFF |  |
| BIAS SOURCE, Y-AXIS = OFF            |  |
| BIAS G-COMP LP-FILTER, Y-AXIS = NA   |  |
| SCALE SOURCE, Y-AXIS = ACC           |  |
| SCALE G-COMP LP-FILTER, Y-AXIS = OFF |  |
| BIAS SOURCE, Z-AXIS = OFF            |  |
| BIAS G-COMP LP-FILTER, Z-AXIS = NA   |  |
| SCALE SOURCE, Z-AXIS = ACC           |  |
| SCALE G-COMP LP-FILTER, Z-AXIS = OFF |  |
| G-COMP LP-FILTER CUTOFF = 0.010 HZ   |  |
|                                      |  |
| >                                    |  |

## Figure 10-36: Example of response from g (GYRO G-COMP) command

>g 8,0.3 GYRO G-COMPENSATION: WARNING: DELAYED GYRO OUTPUT UNIT IS RECOMMENDED BIAS SOURCE, X-AXIS = ACC BIAS G-COMP LP-FILTER, X-AXIS = ON SCALE SOURCE, X-AXIS = ACC SCALE G-COMP LP-FILTER, X-AXIS = OFF BIAS SOURCE, Y-AXIS = ACC BIAS G-COMP LP-FILTER, Y-AXIS = ON SCALE SOURCE, Y-AXIS = ACC SCALE G-COMP LP-FILTER, Y-AXIS = OFF BIAS SOURCE, Z-AXIS = ACC BIAS G-COMP LP-FILTER, Z-AXIS = ON SCALE SOURCE, Z-AXIS = ACC SCALE G-COMP LP-FILTER, Z-AXIS = OFF G-COMP LP-FILTER, Z-AXIS = OFF

## Figure 10-37: Example of response from g (GYRO G-COMP) command with warning



DATASHEET

ButterflyGyro™

>g 0,0,1,1,1,1,0 GYRO G-COMPENSATION: BIAS SOURCE, X-AXIS = OFF BIAS G-COMP LP-FILTER, X-AXIS = NA SCALE SOURCE, X-AXIS = OFF SCALE G-COMP LP-FILTER, X-AXIS = NA BIAS SOURCE, Y-AXIS = OFF BIAS G-COMP LP-FILTER, Y-AXIS = NA SCALE SOURCE, Y-AXIS = OFF SCALE G-COMP LP-FILTER, Y-AXIS = NA BIAS SOURCE, Z-AXIS = ACC BIAS G-COMP LP-FILTER, Z-AXIS = ON SCALE SOURCE, Z-AXIS = ACC SCALE G-COMP LP-FILTER, Z-AXIS = OFF G-COMP LP-FILTER CUTOFF = 0.500 HZ >

Figure 10-38: Example of response from g (GYRO G-COMP) command



ButterflyGyro<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 10.11 b (BIAS TRIM OFFSET) command

General description: Changes bias trim offsets.

Refer to section 8.6.2.3 for a description of this functionality.

#### Table 10-40: Available b (BIAS TRIM OFFSET) commands

| Syntax                                                                                          | Response                                                                                                                                  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| b <sp><biastrimoffset><cr></cr></biastrimoffset></sp>                                           | Sets the bias trim offsets for all sensors and axes.                                                                                      |
|                                                                                                 | Command is useful when clearing all bias trim offsets                                                                                     |
| b <sp><biastrimoffset>','<sens><cr></cr></sens></biastrimoffset></sp>                           | Sets the bias trim offsets for a specific sensor, all axes.                                                                               |
|                                                                                                 | Command is useful when clearing all bias trim offsets for                                                                                 |
|                                                                                                 | a given sensor                                                                                                                            |
| b <sp><deltabiastrimoffset>','<sens>','<axis><cr></cr></axis></sens></deltabiastrimoffset></sp> | Adjusts the bias trim offsets for a specific sensor and<br>axis. <deltabiastrimoffset> is added to the current bias</deltabiastrimoffset> |
|                                                                                                 | trim offset                                                                                                                               |
| b <sp><refinfo>',r'<cr></cr></refinfo></sp>                                                     | Sets the Reference Information. <refinfo> is a 32-bit</refinfo>                                                                           |
|                                                                                                 | unsigned integer that can be used to define a reference                                                                                   |
|                                                                                                 | to the bias trim offsets, e.g. a date code                                                                                                |

If the bias trim offsets are programmed outside the specified min or max limits, ref. Table 6-3 and Table 6-4, the relevant bias trim offsets will be set to min or max, whichever is the closest to the requested value and flagged by error message E008, ref. Table 10-44.

#### Table 10-41: Allowed values for <sens> parameter for b (BIAS TRIM OFFSET) commands

| <sens></sens> | Result                                                |  |
|---------------|-------------------------------------------------------|--|
| g             | Will change bias trim offset for the gyro(s)          |  |
| а             | Will change bias trim offset for the accelerometer(s) |  |

## Table 10-42: Unit of <BiasTrimOffset> and <DeltaBiasTrimOffset> for the different values of <sens> for the b (BIAS TRIM OFFSET) commands

| <sens></sens> | Unit of <biastrimoffset> and <deltabiastrimoffset></deltabiastrimoffset></biastrimoffset> |  |
|---------------|-------------------------------------------------------------------------------------------|--|
| g             | [°/s]                                                                                     |  |
| а             | [g]                                                                                       |  |

#### Table 10-43: Allowed values for <axis> parameter for b (BIAS TRIM OFFSET) command

| <axis></axis>                                  | Result                                       |  |
|------------------------------------------------|----------------------------------------------|--|
| x                                              | Will change bias trim offset for X-axis only |  |
| y Will change bias trim offset for Y-axis only |                                              |  |
| Z                                              | Will change bias trim offset for Z-axis only |  |

#### Table 10-44: Error messages for b (BIAS TRIM OFFSET) command

| Error | Message                    | Possible reason                                                    |
|-------|----------------------------|--------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND            | Command is incorrectly entered                                     |
| E002  | INCORRECT NUMBER OF        | Too many or too few parameters, use of comma between               |
|       | PARAMETERS                 | command and first parameter                                        |
| E003  | INVALID PARAMETER          | Value of parameter outside valid range                             |
| E008  | BIAS TRIM OFFSET(S) SET TO | Requested change(s) reduced due to violation of min/max limits for |
|       | MIN OR MAX                 | bias trim offset(s)                                                |





## STIM320 Inertia Measurement Unit

>b 0 BIAS TRIM OFFSET: GYRO X-AXIS [°/s ] = 0.00000 GYRO Y-AXIS [°/s ] = 0.00000 GYRO Z-AXIS [°/s ] = 0.00000 ACCELEROMETER X-AXIS [g ] = 0.000000 ACCELEROMETER Y-AXIS [g ] = 0.000000 ACCELEROMETER Z-AXIS [g ] = 0.000000

Figure 10-39: Example of response from b (BIAS TRIM OFFSET) command

```
>b 0,a
BIAS TRIM OFFSET:
ACCELEROMETER X-AXIS [g ] = 0.000000
ACCELEROMETER Y-AXIS [g ] = 0.000000
ACCELEROMETER Z-AXIS [g ] = 0.000000
```

Figure 10-40: Example of response from b (BIAS TRIM OFFSET) command

```
>b 0.001,g,x
BIAS TRIM OFFSET:
GYRO X-AXIS [°/s ] = 0.02443
>
```

Figure 10-41: Example of response from b (BIAS TRIM OFFSET) command

```
>b 2.3,a
BIAS TRIM OFFSET:
ACCELEROMETER X-AXIS [g ] = 0.1000000
ACCELEROMETER Y-AXIS [g ] = 0.1000000
ACCELEROMETER Z-AXIS [g ] = 0.1000000
E008 BIAS TRIM OFFSET(S) SET TO MIN OR MAX
```

Figure 10-42: Example of response from b (BIAS TRIM OFFSET) command



Figure 10-43: Example of response from b (BIAS TRIM OFFSET) command



DATASHEET



#### 10.12 s (SAVE) command

General description: Saves configuration parameters to flash. This will permanently change the configuration parameters and hence be valid after an initialization or power-off.

The flash used in STIM320 is specified to be capable of minimum 10,000 saves. A save-counter has been implemented and when the number of saves exceeds 10,000, there will be issued a warning. STIM320 will always attempt to save the configuration when receiving the s (SAVE) command regardless of the content of the save-counter.

#### Table 10-45: Available s (SAVE) command

| Syntax      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s <cr></cr> | Saves system parameters to flash. This command will require an additional<br>confirmation prior to execution. Confirmation ("Y") to be responded in upper case<br>letter.<br>If transmission parameters have been changed (ref. TRANSMISSION<br>PARAMETERS command, section 10.5) AND confirmation to the save-command is<br>not "Y", then the transmission parameters, including bit-rate, will be reset to the<br>previously saved settings<br>NB: Do not turn off power until the ready-prompt (">") has been received |

#### Table 10-46: Error messages for s (SAVE) command

| Error | Message                             | Possible reason                                                                                                                                                                  |
|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E001  | UNKNOWN COMMAND                     | Command is incorrectly entered                                                                                                                                                   |
| E002  | INCORRECT NUMBER OF<br>PARAMETERS   | Any characters between command and <cr></cr>                                                                                                                                     |
| E003  | INVALID PARAMETER                   | Value of parameter outside valid range                                                                                                                                           |
| E004  | EXCEEDED MAXIMUM NUMBER OF<br>SAVES | Warning appears when maximum number of saves has been exceeded (10,000 saves). STIM320 will always attempt to save the configuration when receiving the <u>s</u> (SAVE)-command. |
| E005  | ERROR DURING SAVE                   | System parameters not successfully transferred to flash                                                                                                                          |

>S

SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): Y SYSTEM PARAMETERS SUCCESSFULLY STORED IN FLASH. NUMBER OF SAVES = 26

>

>s

>

#### Figure 10-44: Example of response from s (SAVE) command when confirming save

SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): N SAVE COMMAND ABORTED.

#### Figure 10-45: Example of response from s (SAVE) command when not confirming save

>s SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): y SAVE COMMAND ABORTED.

E003 INVALID PARAMETER

>

Figure 10-46: Example of response from s (SAVE) command when not correctly responding to confirmation



ButterflyGyro<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 10.13 x (EXIT) command

General description: Terminates Service Mode and returns to Normal Mode directly or via Init Mode (ref. Figure 8-8).

#### Table 10-47 : Available x (EXIT) command

| Syntax                                  | Response                |  |
|-----------------------------------------|-------------------------|--|
| x <sp><exit_to><cr></cr></exit_to></sp> | Terminates Service Mode |  |

#### Table 10-48 : Allowed values for <exit\_to> for x (EXIT) command

| <exit_to></exit_to> | Result                                                                              |  |
|---------------------|-------------------------------------------------------------------------------------|--|
| n                   | Terminates Service Mode and return to Normal Mode. If system parameters have        |  |
|                     | been changed compared to flash content, a confirmation is requested before exiting  |  |
|                     | to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time      |  |
|                     | between the transmitted command response and execution of the EXIT-command.         |  |
| i                   | Terminates Service Mode and return to Init Mode. If system parameters have been     |  |
|                     | changed compared to flash content, a confirmation is requested before exiting to    |  |
|                     | Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time between |  |
|                     | the transmitted command response and execution of the EXIT-command.                 |  |
|                     | NB: Changes made to system parameters, but not saved, will be overwritten           |  |
|                     | by the data already stored in flash when entering Init Mode.                        |  |
| N                   | Terminates Service Mode and return immediately to Normal Mode (without              |  |
|                     | confirmation if system parameters have been changed compared to flash and           |  |
|                     | without any hold-time)                                                              |  |
| I                   | Terminates Service Mode and return immediately to Init Mode (without confirmation   |  |
|                     | if system parameters have been changed compared to flash and without any hold-      |  |
|                     | time).                                                                              |  |
|                     | NB: Changes made to system parameters, but not saved, will be overwritten           |  |
|                     | by the data already stored in flash when entering Init Mode.                        |  |

#### Table 10-49: Error messages for x (EXIT) command

| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

SYSTEM RETURNING TO NORMAL MODE.

#### Figure 10-47: Example of response from x n (EXIT) command when system parameters match contents of flash

>x i SYSTEM RETURNING TO INIT MODE.

Figure 10-48: Example of response from x i (EXIT) command when system parameters match contents of flash

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): Y SYSTEM RETURNING TO NORMAL MODE.

Figure 10-49: Example of response from x n (EXIT) command after system parameters have been changed but not saved with confirmed EXIT

CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): N

>x i

>x n

>x n

Figure 10-50: Example of response from x i (EXIT) command after system parameters have been changed but not saved with confirmed not to EXIT

<sup>&</sup>gt;



DATASHEET

ButterflyGyro<sup>™</sup>

CURRENT SYSTEM PARAMETERS DOES NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): n

E003 INVALID PARAMETER

>

>x n

Figure 10-51: Example of response from x n (EXIT) command after system parameters have been changed but not saved with incorrect response to confirmation.



DATASHEET

ButterflyGyro<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 10.14 z (RESTORE TO FACTORY SETTINGS) command

General description: Restores the configuration of the unit to its factory settings. Note: Bias Trim Offset-parameters are not reset

#### Table 10-50: Available z (RESTORE TO FACTORY SETTINGS) commands

| Syntax                    | Response                                                                                             |  |
|---------------------------|------------------------------------------------------------------------------------------------------|--|
| z <cr></cr>               | Restores the configuration of the unit to its factory settings.                                      |  |
|                           | NB: The restored configuration will not be permanent unless it is SAVEd to                           |  |
|                           | flash before EXITing Service Mode, resetting the unit or turning off power.                          |  |
| z <sp>,'s',<cr></cr></sp> | Restores the configuration of the unit to its factory settings and saves the configuration to flash. |  |
|                           | NB: Do not turn off power until the ready-prompt (">") has been received                             |  |

#### Table 10-51: Error messages for z (RESTORE TO FACTORY SETTINGS) command

| Message                    | Possible reason                                                                                                  |
|----------------------------|------------------------------------------------------------------------------------------------------------------|
| UNKNOWN COMMAND            | Command is incorrectly entered                                                                                   |
| INCORRECT NUMBER OF        | Any characters between command and <cr></cr>                                                                     |
| PARAMETERS                 |                                                                                                                  |
| INVALID PARAMETER          | Value of parameter outside valid range                                                                           |
| EXCEEDED MAXIMUM NUMBER OF | Warning appears when maximum number of saves has been                                                            |
| SAVES                      | exceeded (10,000 saves). STIM320 will always attempt to save                                                     |
|                            | the configuration when receiving the s (SAVE)-command.                                                           |
| ERROR DURING SAVE          | System parameters not successfully transferred to flash                                                          |
|                            | UNKNOWN COMMAND<br>INCORRECT NUMBER OF<br>PARAMETERS<br>INVALID PARAMETER<br>EXCEEDED MAXIMUM NUMBER OF<br>SAVES |

RESTORE TO FACTORY SETTINGS. CONFIRM CHANGE TO FACTORY SETTINGS (Y/N): Y

APPLYING FACTORY SETTINGS

FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE OR 'z s' COMMAND.

>

>z

Figure 10-52: Example of response from z (RESTORE TO FACTORY SETTINGS) command with no change in transmission parameters.

>Z

>

RESTORE TO FACTORY SETTINGS. CONFIRM CHANGE TO FACTORY SETTINGS(Y/N): Y THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO: BIT-RATE [bits/s] = 921600 DATA LENGTH = 8 STOP BITS = 1 PARITY = EVEN PLEASE CONFIRM (Y/N): Y

APPLYING FACTORY SETTINGS FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE OR 'z s' COMMAND.

Figure 10-53: Example of response from z (RESTORE TO FACTORY SETTINGS) command with change in transmission parameters.





STIM320 Inertia Measurement Unit

>Z S RESTORE TO FACTORY SETTINGS. CONFIRM CHANGE TO FACTORY SETTINGS AND SAVING(Y/N): Y

THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO: BIT-RATE [bits/s] = 921600 DATA LENGTH = 8 STOP BITS = 1 PARITY = EVEN PLEASE CONFIRM (Y/N): Y

APPLYING FACTORY SETTINGS FACTORY SETTINGS APPLIED AND SAVED. NUMBER OF SAVES = 26

>

Figure 10-54: Example of response from z s (RESTORE TO FACTORY SETTINGS with save of configuration) command with change in transmission parameters.



DATASHEET



#### 10.15 h (SYSTEMS CONFIGURATIONS) command

General description: Sets defined system configurations.

Note that this change will only be effective until STIM320 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.12). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

#### Table 10-52: Available h (SYSTEM CONFIGURATIONS) command

| Syntax                                                                  | Response                           |
|-------------------------------------------------------------------------|------------------------------------|
| h <sp><systemconfig>','<setting><cr></cr></setting></systemconfig></sp> | Sets defined system configurations |

#### Table 10-53: Allowed values for <SystemConfig> parameter for h (SYSTEM CONFIGURATIONS) command

| <systemcor< th=""><th>nfig&gt;</th><th>Function</th></systemcor<> | nfig> | Function                                                           |
|-------------------------------------------------------------------|-------|--------------------------------------------------------------------|
| C                                                                 |       | Sets counter restart-value and interval for CRS (ref. section 8.5) |
|                                                                   |       |                                                                    |

#### Table 10-54: Allowed values for <setting> parameter for counter interval

| < SystemConfig > | <setting></setting> | Result                                                                  |
|------------------|---------------------|-------------------------------------------------------------------------|
| С                | 165535              | Sets counter interval for CRS. As the counter is incrementing at every  |
|                  |                     | 0.5ms, the time-interval for CRS is: counter restart-value x 0.5ms.     |
|                  |                     | Remember counter starts at 0. Hence the counter will take values in the |
|                  |                     | interval [0, counter interval – 1]                                      |
| C                | 0                   | Sets counter interval to maximum [0, 65535]                             |

#### Table 10-55: Error messages for h (SYSTEM CONFIGURATIONS) command

| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

>h c,0 COUNTER INTERVAL: [0, 65535]

>

#### Figure 10-55: Example of response from h (SYSTEM CONFIGURATION) command

>h c,100 COUNTER INTERVAL: [0, 99]

Figure 10-56: Example of response from h (SYSTEM CONFIGURATION) command





ButterflyGyro<sup>™</sup>

## STIM320 Inertia Measurement Unit

#### 10.16 ? (HELP) command

General description: Help function on the available commands in Service Mode.

#### Table 10-56: Available ? (HELP) commands

| Syntax                          | Response                                           |
|---------------------------------|----------------------------------------------------|
| ? <cr></cr>                     | Lists the available parameters for this command    |
| ? <sp><hlp><cr></cr></hlp></sp> | Responds with information on the specified command |

#### Table 10-57: Allowed values for <hlp> for ? (HELP) command

| <hlp></hlp> | Result                                                               |
|-------------|----------------------------------------------------------------------|
| i           | Responds with information on the INFORMATION-command                 |
| а           | Responds with information on the SINGLE-SHOT MEASUREMENT-command     |
| С           | Responds with information on the DIAGNOSTIC-command                  |
| d           | Responds with information on the DATAGRAM FORMAT-command             |
| t           | Responds with information on the TRANSMISSION PARAMETERS-command     |
| r           | Responds with information on the LINE TERMINATION-command            |
| u           | Responds with information on the OUTPUT UNIT-command                 |
| f           | Responds with information on the LP FILTER -3dB FREQUENCY-command    |
| m           | Responds with information on the SAMPLE RATE-command                 |
| g           | Responds with information on the GYRO G-COMP-command                 |
| b           | Responds with information on the BIAS TRIM OFFSET-command            |
| S           | Responds with information on the SAVE-command                        |
| x           | Responds with information on the EXIT-command                        |
| Z           | Responds with information on the RESTORE TO FACTORY SETTINGS-command |
| h           | Responds with information on the SYSTEM CONFIGURATIONS-command       |

#### Table 10-58: Error messages for ? (HELP) commands

| Error | Message             | Possible reason                                      |
|-------|---------------------|------------------------------------------------------|
| E001  | UNKNOWN COMMAND     | Command is incorrectly entered                       |
| E002  | INCORRECT NUMBER OF | Too many or too few parameters, use of comma between |
|       | PARAMETERS          | command and first parameter                          |
| E003  | INVALID PARAMETER   | Value of parameter outside valid range               |

| >?                                              |
|-------------------------------------------------|
| AVAILABLE PARAMETERS:                           |
| i: LISTS SPECIFIC INFORMATION                   |
| a: PERFORMS A SINGLE-SHOT MEASUREMENT           |
| c: PERFORMS A DIAGNOSTIC OF THE UNIT            |
| d: CHANGES DATAGRAM FORMAT                      |
| t : CHANGES TRANSMISSION PARAMETERS             |
| r: CHANGES THE LINE TERMINATION                 |
| u : CHANGES OUTPUT UNIT                         |
| f: CHANGES LP FILTER -3DB FREQUENCY             |
| m: CHANGES SAMPLE RATE                          |
| g: CHANGES CONFIGURATION OF GYRO G-COMPENSATION |
| b: CHANGES BIAS TRIM OFFSETS                    |
| s: SAVES CONFIGURATION DATA                     |
| x: EXITS SERVICE MODE                           |
| z: RESTORES FACTORY SETTINGS                    |
| h: CHANGES SYSTEM CONFIGURATIONS                |
|                                                 |
| >                                               |
|                                                 |

#### Figure 10-57: Example of response from ? (HELP) command





## STIM320 Inertia Measurement Unit

>? i

| i: LISTS THE PRODUCT CONFIGURATION DATA                                                |
|----------------------------------------------------------------------------------------|
| i s: RETURNS THE SERIAL NUMBER                                                         |
| in: RETURNS THE PRODUCT NAME                                                           |
| i x: RETURNS THE PART NUMBER                                                           |
| i a: RETURNS THE AXIS CONFIGURATION                                                    |
| i p: RETURNS THE FW CONFIGURATION AND REVISION                                         |
| im: RETURNS THE SAMPLE RATE                                                            |
| i f: RETURNS THE LP FILTER -3DB FREQUENCY                                              |
| i d: RETURNS THE DATAGRAM FORMAT                                                       |
| i t: RETURNS THE TRANSMISSION PARAMETERS                                               |
| i r: RETURNS THE LINE TERMINATION SETTING                                              |
| i u: RETURNS THE OUTPUT UNIT                                                           |
| i g: RETURNS THE CONFIGURATION OF GYRO G-COMPENSATION                                  |
| i b: RETURNS THE BIAS TRIM OFFSETS                                                     |
| i e: PRINTS THE EXTENDED ERROR INFORMATION FROM THE LAST DETECTED ERROR IN NORMAL MODE |
| i h: RETURNS THE SYSTEM CONFIGURATIONS                                                 |
|                                                                                        |

>

>

#### Figure 10-58: Example of response from ? i (HELP on INFORMATION) command

>? a a: PERFORMS A SINGLE-SHOT MEASUREMENT

#### Figure 10-59: Example of response from ? a (HELP ON SINGLE-SHOT MEASUREMENT) command

>? c c: PERFORMS A DIAGNOSTIC OF THE UNIT

#### Figure 10-60: Example of response from ? c (HELP on DIAGNOSTIC) command

| >? d<br>d <type>', <term>: CHANGES THE DATAGRAM FORMAT<br/>ALLOWED VALUES FOR <type>:<br/>0 = ID, RATE, 8-BITS-COUNTER, LATENCY, CRC<br/>1 = ID, RATE, 8-BITS-COUNTER, LATENCY, CRC<br/>4 = ID, RATE, ACCELERATION, 8-BITS COUNTER, LATENCY, CRC<br/>5 = ID, RATE, ACCELERATION, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC<br/>8 = ID, RATE, 16-BITS COUNTER, LATENCY, CRC<br/>9 = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC<br/>a = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC<br/>b = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC<br/>c = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC<br/>d = ID, RATE, ACCELERATION, PS, 16-BITS COUNTER, LATENCY, CRC<br/>c = ID, RATE, ACCELERATION, PS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, TEMPERATURE, PS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, ACCELERATION, TEMPERATURE, PS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, ACCELERATION, TEMPERATURE, PS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, ACCELERATION, TEMPERATURE, PS, 16-BITS COUNTER, LATENCY, CRC<br/>ALLOWED VALUES FOR <term>:<br/>0 = NONE<br/>1 = <cr><lf></lf></cr></term></type></term></type> |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ALLOWED VALUES FOR <type>:<br/>0 = ID, RATE, 8-BITS-COUNTER, LATENCY, CRC<br/>1 = ID, RATE, ACCELERATION, 8-BITS COUNTER, LATENCY, CRC<br/>4 = ID, RATE, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC<br/>5 = ID, RATE, ACCELERATION, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC<br/>8 = ID, RATE, 16-BITS COUNTER, LATENCY, CRC<br/>9 = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC<br/>a = ID, RATE, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC<br/>b = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC<br/>c = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC<br/>d = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC<br/>c = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC<br/>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC<br/>ALLOWED VALUES FOR <terms:<br>0 = NONE<br/>1 = <cr><lf></lf></cr></terms:<br></type>                                                                                                                                                                                                      | >? d                                                         |
| <ul> <li>0 = ID, RATE, 8-BITS-COUNTER, LATENCY, CRC</li> <li>1 = ID, RATE, ACCELERATION, 8-BITS COUNTER, LATENCY, CRC</li> <li>4 = ID, RATE, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>5 = ID, RATE, ACCELERATION, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>8 = ID, RATE, 16-BITS COUNTER, LATENCY, CRC</li> <li>9 = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC</li> <li>a = ID, RATE, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>b = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>c = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>d = ID, RATE, ACCELERATION, PS, 16-BITS COUNTER, LATENCY, CRC</li> <li>d = ID, RATE, ACCELERATION, PS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>ALLOWED VALUES FOR <terms:< li=""> <li>0 = NONE</li> <li>1 = <cr><lf></lf></cr></li> </terms:<></li></ul>                                                                                                                                        | d <type>','<term>: CHANGES THE DATAGRAM FORMAT</term></type> |
| <ul> <li>1 = ID, RATE, ACCELERATION, 8-BITS COUNTER, LATENCY, CRC</li> <li>4 = ID, RATE, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>5 = ID, RATE, ACCELERATION, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>8 = ID, RATE, 16-BITS COUNTER, LATENCY, CRC</li> <li>9 = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC</li> <li>a = ID, RATE, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>b = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>c = ID, RATE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>d = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>e = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>A = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>ALLOWED VALUES FOR <terms:< li=""> <li>0 = NONE</li> <li>1 = <cr><lf></lf></cr></li> </terms:<></li></ul>                                                    | ALLOWED VALUES FOR <type>:</type>                            |
| <ul> <li>4 = ID, RATE, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>5 = ID, RATE, ACCELERATION, TEMPERATURE, 8-BITS COUNTER, LATENCY, CRC</li> <li>8 = ID, RATE, 16-BITS COUNTER, LATENCY, CRC</li> <li>9 = ID, RATE, ACCELERATION, 16-BITS COUNTER, LATENCY, CRC</li> <li>a = ID, RATE, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>b = ID, RATE, ACCELERATION, TEMPERATURE, 16-BITS COUNTER, LATENCY, CRC</li> <li>c = ID, RATE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>d = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>e = ID, RATE, ACCELERATION, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>f = ID, RATE, ACCELERATION, TEMPERATURE, PPS, 16-BITS COUNTER, LATENCY, CRC</li> <li>ALLOWED VALUES FOR </li></ul>                                                                                                                                                                                                                                                                                                                                                                            |                                                              |

# Figure 10-61: Example of response from ? d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command





## STIM320 Inertia Measurement Unit

>? t t <bit-rate code>[','<bit-rate>]: CHANGES THE BIT-RATE [bits/s] t <bit-rate code>[','<bit-rate>]','<stop bits>','<parity>: CHANGES THE BIT-RATE [bits/s], NUMBER OF STOP-BITS AND PARITY ALLOWED VALUES FOR <bit-rate code>: 0 = 374400 1 = 4608002 = 921600 3 = 1843200 f = USER-DEFINED <br/>
<br/> ALLOWED RANGE FOR <bit-rate>: 1500 - 5023000 (INTEGER VALUE). SEE STIM320 DATASHEET FOR LIMITATIONS ALLOWED VALUES FOR <stop bits>: 1 = 1 2 = 2 ALLOWED VALUES FOR <parity>: 0 = NONE1 = ODD2 = EVEN

Figure 10-62: Example of response from ? t (HELP on TRANSMISSION PARAMETERS) command

>? r r <on/off>: TURNS LINE TERMINATION ON OR OFF ALLOWED VALUES FOR <on/off>: 0 = OFF 1 = ON

#### Figure 10-63: Example of response from ? r (HELP on LINE TERMINATION) command

| >? u                                                 |
|------------------------------------------------------|
| u <sens>','<unit>: CHANGES OUTPUT UNIT</unit></sens> |
| ALLOWED VALUES FOR <sens>:</sens>                    |
| g = GYRO                                             |
| a = ACCELEROMETER                                    |
| p = PPS                                              |
| ALLOWED VALUES FOR u,g, <unit>:</unit>               |
| 0 = ANGULAR RATE                                     |
| 1 = INCREMENTAL ANGLE                                |
| 2 = AVERAGE ANGULAR RATE                             |
| 3 = INTEGRATED ANGLE                                 |
| 8 = ANGULAR RATE - DELAYED                           |
| 9 = INCREMENTAL ANGLE - DELAYED                      |
| a = AVERAGE ANGULAR RATE - DELAYED                   |
| b = INTEGRATED ANGLE - DELAYED                       |
| ALLOWED VALUES FOR u,a, <unit>:</unit>               |
| 0 = ACCELERATION                                     |
| 1 = INCREMENTAL VELOCITY                             |
| 2 = AVERAGE ACCELERATION                             |
| 3 = INTEGRATED VELOCITY                              |
| ALLOWED VALUES FOR u,p, <unit>:</unit>               |
| 0 = TIME SINCE DETECTION OF 0                        |
| 1 = TIME SINCE DETECTION OF 1                        |
| 3 = FILTERED PPS                                     |
| 4 = FILTERED PPS - DELAYED                           |
|                                                      |
| >                                                    |

#### Figure 10-64: Example of response from ? u (HELP on OUTPUT UNIT) command



DATASHEET



>? f f <-3dBfreq>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR ALL SENSORS AND AXES f <-3dBfreq>','sens>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR ALL AXES OF SPECIFIED SENSOR f <-3dBfreq>','<sens>','<axis>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR A SPECIFIC SENSOR AND AXIS ALLOWED VALUES FOR <-3dBfreq>: 0 = 16 1 = 33 2 = 66 3 = 131 4 = 262 ALLOWED VALUES FOR <sens>: g = GYRO(S)a = ACCELEROMETER(S) p = PPSALLOWED VALUES FOR <axis>: x = X-AXISy = Y-AXISz = Z-AXIS

Figure 10-65: Example of response from ? f (HELP on LP FILTER -3dB FREQUENCY) command

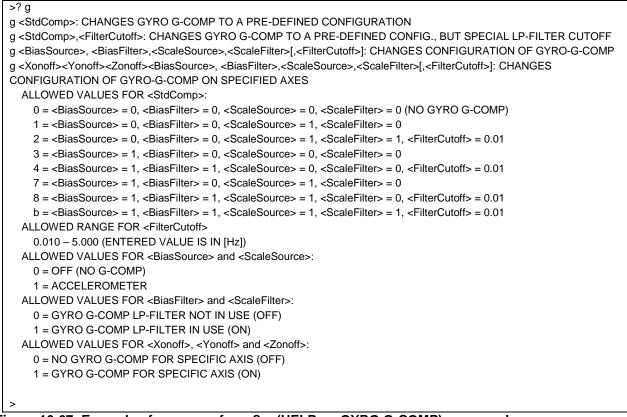

>? m m <sampl.rate>: CHANGES THE SAMPLE RATE [samples/s] ALLOWED VALUES FOR <sampl.rate> 0 = 125 1 = 250 2 = 500 3 = 1000 4 = 2000 5 = EXTERNAL TRIGGER

Figure 10-66: Example of response from ? m (HELP on SAMPLE RATE) command





### STIM320 Inertia Measurement Unit



#### Figure 10-67: Example of response from ? g (HELP on GYRO G-COMP) command

| >? b                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| b <biastrimoffset>: CHANGES BIAS TRIM OFFSET FOR ALL SENSORS AND ALL AXES TO <biastrimoffset></biastrimoffset></biastrimoffset>                       |
| b <biastrimoffset>,<sensor>: CHANGES BIAS TRIM OFFSET FOR ALL AXES OF SPECIFIED SENSOR TO <biastrimoffset></biastrimoffset></sensor></biastrimoffset> |
| b <deltabiastrimoffset>,<sensor>, <axis>: ADJUSTS BIAS TRIM OFFSET FOR SPECIFIED SENSOR AND AXIS BY</axis></sensor></deltabiastrimoffset>             |
| <deltabiastrimoffset></deltabiastrimoffset>                                                                                                           |
| b <refinfo>,r: DEFINES REFERENCE INFO FOR BIAS TRIM OFFSET. <refinfo> IS A 32-BIT UNSIGNED INTEGER</refinfo></refinfo>                                |
| ALLOWED VALUES FOR <sensor>:</sensor>                                                                                                                 |
| g = GYRO(S)                                                                                                                                           |
| a = ACCELEROMETER(S)                                                                                                                                  |
| ALLOWED VALUES FOR <axis>:</axis>                                                                                                                     |
| x = X-AXIS                                                                                                                                            |
| y = Y-AXIS                                                                                                                                            |
| z = Z-AXIS                                                                                                                                            |
| ALLOWED RANGE FOR <biastrimoffset>:</biastrimoffset>                                                                                                  |
| GYROS [°/s]: -1.00000 TO 1.00000                                                                                                                      |
| ACCELEROMETERS [g]: -0.100000 TO 0.100000                                                                                                             |
|                                                                                                                                                       |
| >                                                                                                                                                     |
| Saure 40.00 Evenues of recommendation 2 b (UELD on DIAC TDIM OFFORT) command                                                                          |

#### Figure 10-68: Example of response from ? b (HELP on BIAS TRIM OFFSET) command



#### Figure 10-69: Example of response from ? s (HELP on SAVE) command





### STIM320 Inertia Measurement Unit

>? x

>

? z

>

x n: EXITS SERVICE MODE AND RETURNS TO NORMAL MODE x i: EXITS SERVICE MODE AND RETURNS TO INIT MODE x N: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO NORMAL MODE x I: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO INIT MODE NB: NON-SAVED SYSTEM PARAMETERS WILL BE OVERWRITTEN BY STORED CONTENT IN FLASH WHEN EXITING TO INIT MODE

#### Figure 10-70: Example of response from ? x (HELP on EXIT) command

**Z: RESTORES FACTORY SETTINGS** 

#### Figure 10-71: Example of response from ? z (HELP on RESTORE TO FACTORY SETTINGS) command

? h
h <systemconfig>','<setting>: CHANGE DEFINED SYSTEM CONFIGURATIONS
ALLOWED VALUES FOR <systemconfig>:
c = SETS COUNTER RESTART-VALUE AND INTERVAL FOR CRS
ALLOWED VALUES FOR <setting> PARAMETER WHEN <systemconfig> = c
1..65535 = COUNTER RESTART-VALUE AND INTERVAL FOR CRS IN INCREMENTS OF 0.5ms
0 = NO RESTART-VALUE AND MAXIMUM INTERVAL FOR CRS

Figure 10-72: Example of response from ? h (HELP on SYSTEM CONFIGURATIONS) command







#### 11 COMMANDS IN UTILITY MODE

Several commands are available in Utility Mode, ref. Table 11-1:

| Table 11-1: | Available | commands | in | Utillity | Mode |
|-------------|-----------|----------|----|----------|------|
|-------------|-----------|----------|----|----------|------|

| Command  | Command | Description                                                            | Ref. section |
|----------|---------|------------------------------------------------------------------------|--------------|
| group    |         |                                                                        |              |
| General  | \$isn   | Returns the product serial number                                      | 11.3.1       |
| General  | \$in    | Returns the product name                                               | 11.3.2       |
| General  | \$ix    | Returns the part number                                                | 11.3.3       |
| General  | \$ihw   | Returns the HW configuration                                           | 11.3.4       |
| General  | \$ifw   | Returns the FW configuration                                           | 11.3.5       |
| General  | \$iax   | Returns the axis configuration                                         | 11.3.6       |
| General  | \$irng  | Returns the measurement ranges                                         | 11.3.7       |
| General  | \$im    | Returns the sampling rate                                              | 11.3.8       |
| General  | \$igf   | Returns the LP filter -3dB frequency of the gyros                      | 11.3.9       |
| General  | \$iaf   | Returns the LP filter -3dB frequency of the accelerometers             | 11.3.10      |
| General  | \$ipf   | Returns LP filter -3dB frequency of PPS                                | 11.3.11      |
| General  | \$id    | Returns the datagram format                                            | 11.3.12      |
| General  | \$it    | Returns the RS422 transmission parameters                              | 11.3.13      |
| General  | \$igu   | Returns the output unit of the gyros                                   | 11.3.14      |
| General  | \$iau   | Returns the output unit of the accelerometers                          | 11.3.15      |
| General  | \$ipu   | Returns output unit of PPS                                             | 11.3.16      |
| General  | \$ig    | Returns the configuration of the gyro g-compensation                   | 11.3.17      |
| General  | \$iconf | Returns setting of system configuration                                | 11.3.18      |
| General  | \$ie    | Returns the accumulated extended error information and resets the      | 11.3.19      |
|          |         | accumulated error register                                             |              |
| General  | \$save  | Saves all configuration and system parameters to flash memory          | 11.3.20      |
| General  | \$isv   | Returns the number of remaining saves                                  | 11.3.21      |
| General  | \$xn    | Terminates Utility Mode and returns to Normal Mode                     | 11.3.22      |
| Reconfig | \$sm    | Sets the output sampling rate                                          | 11.4.1       |
| Reconfig | \$sgf   | Sets the LP filter -3dB frequency of the gyros                         | 11.4.2       |
| Reconfig | \$saf   | Sets the LP filter -3dB frequency of the accelerometers                | 11.4.3       |
| Reconfig | \$spf   | Sets the LP filter -3dB frequency of PPS                               | 11.4.4       |
| Reconfig | \$sd    | Sets the datagram format                                               | 11.4.5       |
| Reconfig | \$sgu   | Sets the output unit of the gyros                                      | 11.4.6       |
| Reconfig | \$sau   | Sets the output unit of the accelerometers                             | 11.4.7       |
| Reconfig | \$spu   | Sets the output unit of PPS                                            | 11.4.8       |
| Reconfig | \$sg    | Sets the configuration of the gyro g-compensation                      | 11.4.9       |
| Reconfig | \$sconf | Sets system configuration                                              | 11.4.10      |
| BTO      | \$ibto  | Returns the bias trim offsets                                          | 11.5.1       |
| BTO      | \$sdbto | Adjusts the bias trim offsets                                          | 11.5.2       |
| BTO      | \$sbto  | Programs the bias trim offset(s)                                       | 11.5.3       |
| BTO      | \$irf   | Returns the last programmed reference information for bias trim offset | 11.5.4       |
|          |         | 11.5.5                                                                 |              |

Note: Use of commands that changes parameters do not permanently store the new values. The updated values will be in effect until the part is powered off or reset. To permanently store the new values, the \$save-command (ref. section 11.3.20) must be used after having updated the required parameters.



DATASHEET



#### 11.1 Acknowledgement for entering Utility Mode

After the "UTILITYMODE"-command has been received, the response as shown in Figure 11-1 is transmitted to acknowledge having entered Utility Mode:

#### #UTILITYMODE,234<CR>

#### Figure 11-1: Acknowledgement for entering Utility Mode

The number 234 in Figure 11-1 is the CRC of the response, ref. section 11.2.3.

#### **11.2 Command protocol for Utility Mode**

The protocol is optimized for machine – machine communication. All communication is however in readable ASCII format and all numbers are in decimal format.

#### 11.2.1 Command string

- a) All commands start with a message start character, '\$'
- b) All characters must be in lower case letters
- c) All parameters are delimited by character: ',' (comma)
- d) Leading white space characters <SP> and <HT> are allowed in front of all parameters
- e) Decimal separator is ".", scientific notation is allowed.
- f) To ensure correct reception, last parameter is always an 8 bit CRC checksum (ref. section 11.2.3)
- g) All commands are terminated by ASCII character carriage return (<CR>)
- h) Maximum number of characters in command string (including <CR>) is 100

#### 11.2.2 Response string

- a) All responses from the STIM320 starts with a start character '#'
- b) The first return value is the command
- c) All data are delimited by character: ',' (comma)
- d) Second value is status of the executed command (0= OK, other = error), (ref. section 11.2.4)
- e) Number of extra return values are defined for each command
- f) Last value is always an 8 bit CRC checksum to ensure correct transmission (ref. section 11.2.3)
- g) All command responses are terminated by ASCII character carriage return (<CR>)

#### 11.2.3 Checksum

Both the command string and the response string contain a checksum as the last parameter to ensure that the string content is transmitted correctly.

The Checksum is calculated as a Cyclic Redundancy Checksum (CRC) with polynomial  $X^8 + X^2 + X + 1$ , seed = 0x0FF.

The checksum is calculated from ASCII values of all the characters in the proceeding string, including the start character ('\$' or '#') and the last comma in front of the checksum.

The checksum value is presented as an ASCII string with a decimal value "0" through "255"

\$isn,28<CR> #isn,0,N2558184602002,32<CR>

#### Figure 11-2: Example of response string with CRC checksum



DATASHEET



#### 11.2.4 Command status codes

The status parameter is reporting the result of decoding and processing of the given command. Figure 11-2 lists the possible status codes. When status = 0 then there are no errors.

#### Table 11-2: List of possible status codes for commands

| Status code | code Reason                                                                                      |  |
|-------------|--------------------------------------------------------------------------------------------------|--|
| 0           | Command execution OK                                                                             |  |
| 1           | Invalid command (\$ missing in start of command-string or command used on a non-configured axis) |  |
| 2           | Incorrect CRC                                                                                    |  |
| 3           | Unknown command                                                                                  |  |
| 4           | Incorrect number of parameters                                                                   |  |
| 5           | Invalid parameter(s)                                                                             |  |
| 6           | Exceeded maximum number of saves                                                                 |  |
| 7           | Error during save                                                                                |  |
| 8           | Requested change(s) reduced due to violation of min/max limits for bias trim offset(s)           |  |

If more than one error occurs, the lowest status code will be in the command-response.

| Example of invalid command: ibto,160 <cr></cr>                                |  |
|-------------------------------------------------------------------------------|--|
| Response to command: #,1,180 <cr></cr>                                        |  |
| Explanation of response:<br>1: # = no/invalid command                         |  |
| 2: Status of command execution = 1 (Invalid command, ref. Table 11-2)         |  |
| 3: CRC-8 calculation                                                          |  |
| Figure 11-3: Example of response in case of invalid command (status code = 1) |  |

Example of command with incorrect CRC: \$sbto,0.00123,12<CR> Response to command: #,2,139<CR>

Explanation of response:

- 1: # = no/invalid command
- 2: Status of command execution = 2 (Incorrect CRC, ref. Table 11-2)
- 3: CRC-8 calculation

#### Figure 11-4: Example of response in case of incorrect CRC (status code = 2)

Example of command with unknown command: \$dbto,0.00123,0<CR> Response to command: #.3,158<CR>

Explanation of response:

- 1: # = no/invalid command
- 2: Status of command execution = 3 (Unknown command, ref. Table 11-2)

3: CRC-8 calculation

#### Figure 11-5: Example of response in case of unknown command (status code = 3)

Example of command with incorrect number of parameters: \$sbto,0.0123,g,y,0,2<CR> Response to command: #sbto,4,136<CR>

Explanation of response:

1: sbto = command

2: Status of command execution = 4 (Incorrect number of parameters, ref. Table 11-2)

3: CRC-8 calculation

#### Figure 11-6: Example of response in case of incorrect number of parameters (status code = 4)





### STIM320 Inertia Measurement Unit

Example of command with invalid parameter(s): \$sbto,0.0123,s,y, 60<CR> Response to command: #sbto,5,157<CR>

Explanation of response:

1: sbto = command

2: Status of command execution = 5 (Invalid parameter(s), ref. Table 11-2)

3: CRC-8 calculation

#### Figure 11-7: Example of response in case of invalid parameter(s) (status code = 5)

Example of command when exceeded maximum number of saves occurs: \$save,33<CR> Response to command: #save,6,0,158<CR>

Explanation of response:

1: save = command

2: Status of command execution = 6 (Exceeded maximum number of saves, ref. Table 11-2. Note: the parameters will be saved even if remaining number of saves was 0 prior to saving. However, this could eventually lead to quality issues related to the flash memory)

3. Remaining number of saves = 0 (No remaining saves)

4: CRC-8 calculation

#### Figure 11-8: Example of response in case of exceeded maximum number of saves (status code = 6)

Example of command when error during save occurs: \$save,33<CR> Response to command: #save,7,8848,163<CR>

Explanation of response:

- 1: save = command
- 2: Status of command execution = 7 (Error during save, ref. Table 11-2)
- 3. Remaining number of saves = 8848
- 4: CRC-8 calculation

#### Figure 11-9: Example of response in case of error during save (status code = 7)

Example of command with requested change(s) reduced due to violation of min/max limits for bias trim offset(s): \$sdbto,0.01388,-0.02425,0.01724,-1,1,1,0,0,0,237<CR> Response to command: #sdbto,8,0.02311,0.00934,-0.54432,-0.100000,0.100000,0.100000,0.0000000,0.0000000,45<CR> Explanation of response: 1: sdbto = command 2: Status of command execution: ref. Table 11-2 3: NEW GYRO X-AXIS BIAS TRIM OFFSET [°/s] = 0.02311 4: NEW GYRO Y-AXIS BIAS TRIM OFFSET [°/s] = 0.00934 5: NEW GYRO Z-AXIS BIAS TRIM OFFSET [°/s] = -0.54432 6: NEW ACCELEROMETER X-AXIS BIAS TRIM OFFSET [g] = -0.100000 (offset set to minimum limit) 7: NEW ACCELEROMETER Y-AXIS BIAS TRIM OFFSET [g] = 0.100000 (offset set to maximum limit) 8: NEW ACCELEROMETER Z-AXIS BIAS TRIM OFFSET [g] = 0.100000 (offset set to maximum limit) 9: FOR FUTURE USE = 0.0000000 10: FOR FUTURE USE = 0.0000000 11: FOR FUTURE USE = 0.0000000 12: CRC-8 calculation

Figure 11-10: Example of response in case of requested change(s) reduced due to violation of min/max limits for bias trim offset(s) (status code = 8)



DATASHEET



#### 11.3 General commands

General description: Various general commands.

|  | Table 11-3: | Available | info | commands |
|--|-------------|-----------|------|----------|
|--|-------------|-----------|------|----------|

| Command | Description                                                       | Ref. section |
|---------|-------------------------------------------------------------------|--------------|
| \$isn   | Returns product serial number                                     | 11.3.1       |
| \$in    | Returns product name                                              | 11.3.2       |
| \$ix    | Returns part number                                               | 11.3.3       |
| \$ihw   | Returns HW configuration                                          | 11.3.4       |
| \$ifw   | Returns FW configuration                                          | 11.3.5       |
| \$iax   | Returns axis configuration                                        | 11.3.6       |
| \$irng  | Returns measurement ranges                                        | 11.3.7       |
| \$im    | Returns sampling rate                                             | 11.3.8       |
| \$igf   | Returns LP filter -3dB frequency of the gyros                     | 11.3.9       |
| \$iaf   | Returns LP filter -3dB frequency of the accelerometers            | 11.3.10      |
| \$ipf   | Returns LP filter -3dB frequency of PPS                           | 11.3.11      |
| \$id    | Returns datagram format                                           | 11.3.12      |
| \$it    | Returns RS422 transmission parameters                             | 11.3.13      |
| \$igu   | Returns output unit of the gyros                                  | 11.3.14      |
| \$iau   | Returns output unit of the accelerometers                         | 11.3.15      |
| \$ipu   | Returns output unit of PPS                                        | 11.3.16      |
| \$ig    | Returns configuration of the gyro g-compensation                  | 11.3.17      |
| \$iconf | Returns setting of system configuration                           | 11.3.18      |
| \$ie    | Returns the accumulated extended error information and resets the | 11.3.19      |
|         | accumulated error register                                        |              |
| \$save  | Saves all configuration and system parameters to flash memory     | 11.3.20      |
| \$isv   | Returns the number of remaining saves                             | 11.3.21      |
| \$xn    | Terminates Utility Mode and returns to Normal Mode                | 11.3.22      |

#### 11.3.1 \$isn

Ρι

| urpose: Provide information about product serial number |
|---------------------------------------------------------|
| Format: \$isn, <crc><cr></cr></crc>                     |
| Example of command: \$isn,28 <cr></cr>                  |
| Example of response: #isn,0,N2558184602002,32 <cr></cr> |
| Explanation of response:                                |
|                                                         |
| 1: isn = command                                        |
| 2. Status of command execution: ref. Table 11-2         |

- 3: SERIAL NUMBER = N2558184602002

```
4: CRC-8 calculation
```

#### Figure 11-11: Specification and example of \$isn command

#### 11.3.2 \$in

Purpose: Provide information about product name

|   | Format: \$in, <crc><cr></cr></crc>                 |
|---|----------------------------------------------------|
|   | Example of command: \$in,95 <cr></cr>              |
|   | Example of response: #in,0,STIM320,33 <cr></cr>    |
|   |                                                    |
|   | Explanation of response:                           |
|   | 1: in = command                                    |
|   | 2: Status of command execution: ref. Table 11-2    |
|   | 3: PRODUCT = STIM320                               |
|   | 4: CRC-8 calculation                               |
| - | in the AA AA An active and example of the common d |

#### Figure 11-12: Specification and example of \$in command





### STIM320 Inertia Measurement Unit

#### 11.3.3 \$ix

Purpose: Provide information about part number and revision

Format: \$ix,<CRC><CR>

Example of command: \$ix,118<CR>

Example of response: #ix,0,84792,-,133<CR>

Explanation of response:

1: ix = command

2: Status of command execution: ref. Table 11-2

3: PART NUMBER = 84972

4: REVISION = -

5: CRC-8 calculation

#### Figure 11-13: Specification and example of \$ix command

#### 11.3.4 \$ihw

Purpose: Provide information about hardware configuration

| Format: \$ihw, <crc><cr></cr></crc>                    |  |
|--------------------------------------------------------|--|
| Example of command: \$ihw,184 <cr></cr>                |  |
| Example of response: #ihw,0,M5728 REV 11,215 <cr></cr> |  |
|                                                        |  |
| Explanation of response:                               |  |
| 1 : ihw = command                                      |  |
| 2: Status of command execution: ref. Table 11-2        |  |
| 3: HW CONFIG = M5728 REV 11                            |  |
| 4: CRC-8 calculation                                   |  |

#### Figure 11-14: Specification and example of \$ihw command

#### 11.3.5 \$ifw

Purpose: Provide information about firmware configuration

Format: \$ifw,<CRC><CR> Example of command: \$ifw,148<CR>

Example of response: #ifw,0,SWD12409 REV 0,23<CR>

Explanation of response:

1 : ifw = command

2: Status of command execution: ref. Table 11-2

3: FW CONFIG = SWD12409 REV 0

4: CRC-8 calculation

#### Figure 11-15: Specification and example of \$ifw command

#### 11.3.6 \$iax

Purpose: Provide information about axis configuration

|   | Format: \$iax, <crc><cr></cr></crc>                                                        |
|---|--------------------------------------------------------------------------------------------|
|   | Example of command: \$iax,65 <cr></cr>                                                     |
|   | Example of response: #iax,0,XYZ,XYZ,NA,214 <cr></cr>                                       |
|   |                                                                                            |
|   | Explanation of response:                                                                   |
|   | 1 : iax = command                                                                          |
|   | 2: Status of command execution: ref. Table 11-2                                            |
|   | 3: GYRO AXIS CONFIGURATION = XYZ (if no axis configured, the response will be NA)          |
|   | 4: ACCELEROMETER AXIS CONFIGURATION = XYZ (if no axis configured, the response will be NA) |
|   | 5: RESERVED FOR FUTURE USE = NA (if no axis configured, the response will be NA)           |
|   | 6: CRC-8 calculation                                                                       |
| F | igure 11-16: Specification and example of \$iax command                                    |
| - |                                                                                            |
|   |                                                                                            |





### STIM320 Inertia Measurement Unit

#### 11.3.7 \$irng

| Ρ | urpose: Provide information about measurement range                                                     |
|---|---------------------------------------------------------------------------------------------------------|
|   | Format: \$irng, <crc><cr></cr></crc>                                                                    |
|   | Example of command: \$irng,74 <cr></cr>                                                                 |
|   | Example of response: #irng,0,400,400,400,10,10,10,NA,NA,NA,NA,196 <cr></cr>                             |
|   | Explanation of response:                                                                                |
|   | 1 : irng = command                                                                                      |
|   | 2: Status of command execution: ref. Table 11-2                                                         |
|   | 3: GYRO RANGE, X-AXIS [°/s] = 400 (if axis is not configured, response will be NA)                      |
|   | 4: GYRO RANGE, Y-AXIS [°/s] = 400 (if axis is not configured, response will be NA)                      |
|   | 5: GYRO RANGE, Z-AXIS [°/s] = 400 (if axis is not configured, response will be NA)                      |
|   | <ol><li>ACCELEROMETER RANGE, X-AXIS [g] = 10 (if axis is not configured, response will be NA)</li></ol> |
|   | 7: ACCELEROMETER RANGE, Y-AXIS [g] = 10 (if axis is not configured, response will be NA)                |
|   | 8: ACCELEROMETER RANGE, Z-AXIS [g] = 10 (if axis is not configured, response will be NA)                |
|   | 9: FOR FUTURE USE = NA (if axis is not configured, response will be NA)                                 |
|   | 10: FOR FUTURE USE = NA (if axis is not configured, response will be NA)                                |
|   | 11: FOR FUTURE USE = NA (if axis is not configured, response will be NA)                                |
|   | 12: FOR FUTURE USE = NA (if axis is not configured, response will be NA)                                |
|   | 13: CRC-8 calculation                                                                                   |

Figure 11-17: Specification and example of \$irng command

#### 11.3.8 \$im

Purpose: Provide information about output sampling rate

Format: \$im,<CRC><CR> Example of command: \$im,96<CR> Example of response: #im,0,4,85<CR>

Explanation of response:

1 : im = command

2: Status of command execution: ref. Table 11-2

3: SAMPLING FREQUENCY = 4 (2000 samples/s, ref. input parameters in Figure 11-33)

4: CRC-8 calculation

Figure 11-18: Specification and example of \$ix command

#### 11.3.9 \$igf

Purpose: Provide information about the gyro LP FILTER -3dB frequencies

Format: \$igf,<CRC><CR>

| · · · · · · · · · · · · · · · · · · ·                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| xample of command: \$igf,189 <cr></cr>                                                                                                         |
| Example of response: #igf,0,4,4,4,113 <cr></cr>                                                                                                |
| Explanation of response:                                                                                                                       |
| : igf = command                                                                                                                                |
| : Status of command execution: ref. Table 11-2                                                                                                 |
| B: GYRO LP FILTER -3dB FREQUENCY, X-AXIS = 4 (256Hz, ref. input parameters in Figure 11-34. If axis is not configured, response will be<br>NA) |
| E GYRO LP FILTER -3dB FREQUENCY, Y-AXIS = 4 (256Hz, ref. input parameters in Figure 11-34. If axis is not configured, response will be<br>NA)  |
| :: GYRO LP FILTER -3dB FREQUENCY, Z-AXIS = 4 (256Hz, ref. input parameters in Figure 11-34. If axis is not configured, response will be NA)    |

6: CRC-8 calculation

#### Figure 11-19: Specification and example of \$igf command



*ButterflyGyro*<sup>™</sup>

### STIM320 Inertia Measurement Unit

#### 11.3.10 \$iaf

Purpose: Provide information about the accelerometer LP FILTER -3dB frequencies

Format: \$iaf,<CRC><CR>

Example of command: \$iaf,192<CR> Example of response: #iaf,0,4,4,4,51<CR>

\_ . . .

Explanation of response: 1 : iaf = command

- 2: Status of command execution: ref. Table 11-2
- 3: ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS = 4 (256Hz, ref. input parameters in Figure 11-35. If axis is not configured, response will be NA)
- 4: ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS = 4 (256Hz, ref. input parameters in Figure 11-35. If axis is not configured, response will be NA)
- 5: ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS = 4 (256Hz, ref. input parameters in Figure 11-35. If axis is not configured, response will be NA)

6: CRC-8 calculation

#### Figure 11-20: Specification and example of \$iaf command

#### 11.3.11 \$ipf

Purpose: Provide information about the PPS LP FILTER -3dB frequency

|   | Format: \$ipf, <crc><cr></cr></crc>                                                |
|---|------------------------------------------------------------------------------------|
|   | Example of command: \$ipf,9 <cr></cr>                                              |
|   | Example of response: #ipf,0,4,183 <cr></cr>                                        |
|   |                                                                                    |
|   | Explanation of response:                                                           |
|   | 1 : ipf = command                                                                  |
|   | 2: Status of command execution: ref. Table 11-2                                    |
|   | 3: PPS LP FILTER -3dB FREQUENCY = 4 (256Hz, ref. input parameters in Figure 11-36. |
|   | 4: CRC-8 calculation                                                               |
| F | igure 11-21: Specification and example of \$ipf command                            |

#### 11.3.12 \$id

Purpose: Provide information about the datagram format

Format: \$id,<CRC><CR> Example of command: \$id,221<CR>

Example of response: #id,0,0,103<CR>

Explanation of response:

1 : id = command

2: Status of command execution: ref. Table 11-2

3: DATAGRAM FORMAT = 0 (ID,RATE,8-BITS COUNTER,LATENCY: ref. input parameters in Figure 11-37)

4: CRC-8 calculation

Figure 11-22: Specification and example of \$id command





### STIM320 Inertia Measurement Unit

#### 11.3.13 \$it

Purpose: Provide information about the RS422 transmission parameters Format: \$id,<CRC><CR> Example of command: \$it,138<CR> Example of response: #it,0,374400,8,1,2,1,1,87<CR> Explanation of response: 1 : it = command 2: Status of command execution: ref. Table 11-2 3: BIT RATE [bps] = 374400 4: DATALENGTH = 8 5: STOP BITS = 1 6: PARITY = 2 (EVEN, ref. Table 10-17) 7: LINE TERMINATION = 1 (ON, ref. Table 10-20) 8: DATAGRAM TERMINATION = 1 (<CR><LF>, ref. Table 10-12) 9: CRC-8 calculation

#### Figure 11-23: Specification and example of \$it command

#### 11.3.14 \$igu

Purpose: Provide information about the gyro output unit

|   | Format: \$igu, <crc><cr></cr></crc>                                                             |
|---|-------------------------------------------------------------------------------------------------|
|   | Example of command: \$igu,213 <cr></cr>                                                         |
|   | Example of response: #igu,0,1,211 <cr></cr>                                                     |
|   |                                                                                                 |
|   | Explanation of response:                                                                        |
|   | 1 : igu = command                                                                               |
|   | 2: Status of command execution: ref. Table 11-2                                                 |
|   | 3: GYRO OUTPUT UNIT = 1 ([°/sample] – INCREMENTAL ANGLE, ref. input parameters in Figure 11-38) |
|   | 4: CRC-8 calculation                                                                            |
| F | igure 11-24: Specification and example of \$igu command                                         |
|   |                                                                                                 |

### 11.3.15 \$iau

Purpose: Provide information about the accelerometer output unit

| Format: \$iau, <crc><cr></cr></crc>                                                                           |
|---------------------------------------------------------------------------------------------------------------|
| Example of command: \$iau,168 <cr></cr>                                                                       |
| Example of response: #iau,0,1,31 <cr></cr>                                                                    |
|                                                                                                               |
| Explanation of response:                                                                                      |
| 1 : iau = command                                                                                             |
| 2: Status of command execution: ref. Table 11-2                                                               |
| 3: ACCELEROMETER OUTPUT UNIT = 1 ([m/s/sample] – INCREMENTAL VELOCITY, ref. input parameters in Figure 11-39) |
| 4: CRC-8 calculation                                                                                          |
| gure 11-25: Specification and example of \$iau command                                                        |

Figure 11-25: Specification and example of \$iau command

#### 11.3.16 \$ipu

Purpose: Provide information about the PPS output unit

| Example of command: \$ipu,97 <cr< th=""><th>&gt;</th><th></th></cr<> | >                                                                 |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Example of response: #ipu,0,1,19<                                    | CR>                                                               |  |
| Explanation of response:                                             |                                                                   |  |
| 1 : ipu = command                                                    |                                                                   |  |
| 2: Status of command execution: re                                   | ef. Table 11-2                                                    |  |
| 3: PPS OUTPUT UNIT = 1 ([μs] − 1                                     | Fime since detection of 1, ref. input parameters in Figure 11-40) |  |
| 4: CRC-8 calculation                                                 |                                                                   |  |



DATASHEET



#### 11.3.17 \$ig

| Purpose: Provide information about the configuration of gyro g-compensation for a specified axis |  |  |
|--------------------------------------------------------------------------------------------------|--|--|
| Format: \$ig, <axis><crc><cr></cr></crc></axis>                                                  |  |  |
| Explanation of input parameters:                                                                 |  |  |
| <axis>: Specified axis. Valid entries are:</axis>                                                |  |  |
| • x : X-axis                                                                                     |  |  |
| • y : Y-axis                                                                                     |  |  |
| • z : Z-axis                                                                                     |  |  |
| Example of command: \$ig,x,167 <cr></cr>                                                         |  |  |
| Example of response: #ig,0,X,1,1,0,0.5,65 <cr></cr>                                              |  |  |
|                                                                                                  |  |  |
| Explanation of response:                                                                         |  |  |
| 1 : ig = command                                                                                 |  |  |
| 2: Status of command execution: ref. Table 11-2                                                  |  |  |
| 3: Axis = X                                                                                      |  |  |
| 4: GYRO G-COMPENSATION SCALE SOURCE = 1 (ACCELEROMETER, ref. input parameters in Figure 11-41)   |  |  |
| 5: GYRO G-COMPENSATION SCALE LP FILTER = 1 (ON, ref. input parameters in Figure 11-41)           |  |  |
| 6: GYRO G-COMPENSATION BIAS SOURCE = 0 (OFF, ref. input parameters in Figure 11-41)              |  |  |
| 7: GYRO G-COMPENSATION BIAS LP FILTER = 0 (OFF, ref. input parameters in Figure 11-41)           |  |  |
| 8: LP FILTER -3dB FREQUENCY [Hz] = 0.5 (ref. input parameters in Figure 11-41)                   |  |  |
| 9: CRC-8 calculation                                                                             |  |  |
| Figure 11-27: Specification and example of \$ig command                                          |  |  |

#### 11.3.18 \$iconf

Purpose: Provide information about system configuration
Format: \$iconf,<SystPar>,<Config><CRC><CR>
Explanation of input parameters:
<SystPar>: System parameter. Valid entry is:

c: Counter restart-value and interval for CRS (ref. section 8.5)

Example of command: \$iconf,c,239<CR>
Example of response: #iconf,C,100,11<CR>
Explanation of response:

iconf = command
Status of command execution: ref. Table 11-2
SYSTEM PARAMETER = C (Counter restart-value and interval for CRS, ref. input parameters in Figure 11-42)
CONFIGURATION = 100 (Counter interval [0, 99], ref. input parameters in Figure 11-42)

#### Figure 11-28: Specification and example of \$iconf command





### STIM320 Inertia Measurement Unit

#### 11.3.19 \$ie

Purpose: Provide the accumulated extended error information and reset the accumulated error register

Format: \$ie,<CRC><CR> Example of command: \$ie,200<CR>

Explanation of response:

1 : ie = command

2: Status of command execution: ref. Table 11-2

| 3: EXTENDED ERROR REGISTER, BYTE#1 (MSB) in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14   |
|-------------------------------------------------------------------------------------------------------------------|
| 4: EXTENDED ERROR REGISTER, BYTE#2 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 5: EXTENDED ERROR REGISTER, BYTE#3 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 6: EXTENDED ERROR REGISTER, BYTE#4 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 7: EXTENDED ERROR REGISTER, BYTE#5 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 8: EXTENDED ERROR REGISTER, BYTE#6 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 9: EXTENDED ERROR REGISTER, BYTE#7 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14         |
| 10: EXTENDED ERROR REGISTER, BYTE#8 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14        |
| 11: EXTENDED ERROR REGISTER, BYTE#9 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14        |
| 12: EXTENDED ERROR REGISTER, BYTE#10 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 13: EXTENDED ERROR REGISTER, BYTE#11 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 14: EXTENDED ERROR REGISTER, BYTE#12 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 15: EXTENDED ERROR REGISTER, BYTE#13 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 16: EXTENDED ERROR REGISTER, BYTE#14 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 17: EXTENDED ERROR REGISTER, BYTE#15 in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14       |
| 18: EXTENDED ERROR REGISTER, BYTE#16 (LSB) in EXTENDED ERROR INFORMATION DATAGRAM: ref. Table 6-13 and Table 6-14 |
| 19: CRC-8 calculation                                                                                             |

#### Figure 11-29: Specification and example of \$ie command

Note: Reading the extended error information will reset the accumulated error register.

#### 11.3.20 \$save

Purpose: Permanently store all configuration and system parameters to flash memory

| Format: \$save, <crc><cr></cr></crc>            |  |
|-------------------------------------------------|--|
| Example of command: \$save,33, <cr></cr>        |  |
| Example of response: #save,0,9958,175 <cr></cr> |  |
| Explanation of response:                        |  |
| 1: save = command                               |  |
| 2: Status of command execution: ref. Table 11-2 |  |
| 3. REMAINING NUMBER OF SAVES = 9958             |  |
| 4: CRC-8 calculation                            |  |

#### Figure 11-30: Specification and example of \$save command

Note: the parameters will be saved even if remaining number of saves was 0 prior to saving. However, this could eventually lead to quality issues related to the flash memory

#### 11.3.21 \$isv

Purpose: Provide information about the number of remaining saves

| Format: \$isv. <crc><cr></cr></crc>                     |
|---------------------------------------------------------|
| Example of command: \$isv,227 <cr></cr>                 |
| Example of response: #isv.0.9958.168 <cr></cr>          |
|                                                         |
| Explanation of response:                                |
| 1: isv = command                                        |
| 2: Status of command execution: ref. Table 11-2         |
| 3: NUMBER OF REMAINING SAVES = 9958                     |
| 4: CRC-8 calculation                                    |
| igure 11-31: Specification and example of \$isy command |

#### Figure 11-31: Specification and example of \$isv command



DATASHEET



#### 11.3.22 \$xn

Purpose: Terminate Utility Mode and return to Normal Mode

Format: \$xn,<CRC><CR>

Example of command: \$xn,150,<CR>

Example of response: #xn,0,125<CR> Explanation of response (format):

1: xn = command

2: Status of command execution: ref. Table 11-2

3: CRC-8 calculation

Figure 11-32: Specification and example of \$xn command



DATASHEET



#### **11.4 Commands for reconfiguration**

General description: Various commands to reconfigure the part.

Note: Use of commands that changes parameters do not permanently store the new values. The updated values will be in effect until the part is powered off or reset. To permanently store the new values, the \$save-command (ref. section 11.3.20) must be used after having updated the required parameters.

#### Table 11-4: Available commands for reconfiguration

| Command | Description                                             | Ref. section |
|---------|---------------------------------------------------------|--------------|
| \$sm    | Sets the output sampling rate                           | 11.4.1       |
| \$sgf   | Sets the LP filter -3dB frequency of the gyros          | 11.4.2       |
| \$saf   | Sets the LP filter -3dB frequency of the accelerometers | 11.4.3       |
| \$spf   | Sets the LP filter -3dB frequency of PPS                | 11.4.4       |
| \$sd    | Sets the datagram format                                | 11.4.5       |
| \$sgu   | Sets the output unit of the gyros                       | 11.4.6       |
| \$sau   | Sets the output unit of the accelerometers              | 11.4.7       |
| \$spu   | Sets the output unit of PPS                             | 11.4.8       |
| \$sg    | Sets the configuration of the gyro g-compensation       | 11.4.9       |
| \$sconf | Sets system configuration                               | 11.4.10      |

#### 11.4.1 \$sm

Purpose: Change the output sampling rate

Format: \$sm,<SamplingRate>,<CRC><CR> Explanation of input parameters: <SamplingRate>: Output sampling rate. Valid entries are: 0:125 samples/s 1:250 samples/s 2:500 samples/s 3:1000 samples/s 4 : 2000 samples/s 5 : External Trigger Example of command: \$sm,4,115<CR> Example of response: #sm,0,4,213<CR> Explanation of response: 1: sm = command 2: Status of command execution: ref. Table 11-2 3. SAMPLING FREQUENCY = 4 (2000 samples/) 4: CRC-8 calculation

Figure 11-33: Specification and example of \$sm command





## STIM320 Inertia Measurement Unit

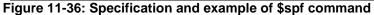
### 11.4.2 \$sgf

| Purpose: Change the LP filter -3dB frequency of the gyros |                                                               |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------|--|--|
| Format:                                                   | \$sgf, <axis>,<lp filter="">,<crc><cr></cr></crc></lp></axis> |  |  |
| Explanat                                                  | Explanation of input parameters:                              |  |  |
|                                                           | Specified axis. Valid entries are:                            |  |  |
|                                                           | x : X-axis                                                    |  |  |
|                                                           | y : Y-axis                                                    |  |  |
|                                                           | z : Z-axis                                                    |  |  |
| -                                                         | LP Filter>: LP filter -3dB frequency. Valid entries are:      |  |  |
| •                                                         | 0:16Hz                                                        |  |  |
| •                                                         | 1 : 33Hz                                                      |  |  |
|                                                           | 2 : 66Hz                                                      |  |  |
| •                                                         | 3 : 131Hz                                                     |  |  |
| •                                                         | 4 : 262Hz                                                     |  |  |
| Example of command: \$sgf,x,3,214 <cr></cr>               |                                                               |  |  |
|                                                           | Example of response: #sgf,0,X,3,125 <cr></cr>                 |  |  |
|                                                           |                                                               |  |  |
| Explanation of response:                                  |                                                               |  |  |
| 1: sgf = command                                          |                                                               |  |  |
| 2: Status of command execution: ref. Table 11-2           |                                                               |  |  |
| 3: GYRC                                                   | 3: GYRO LP FILTER -3dB FREQUENCY, X-AXIS = 3 (131Hz)          |  |  |
| 4: CRC-8                                                  | 8 calculation                                                 |  |  |

#### Figure 11-34: Specification and example of \$sgf command

#### 11.4.3 \$saf

| Purpose: Change the LP filter -3dB frequency of the accelerometers    |  |  |
|-----------------------------------------------------------------------|--|--|
| Format: \$saf, <axis>,<lp filter="">,<crc><cr></cr></crc></lp></axis> |  |  |
|                                                                       |  |  |
| Explanation of input parameters:                                      |  |  |
| <axis>: Specified axis. Valid entries are:</axis>                     |  |  |
| • x : X-axis                                                          |  |  |
| • y : Y-axis                                                          |  |  |
| • z : Z-axis                                                          |  |  |
| <lp filter="">: LP filter -3dB frequency. Valid entries are:</lp>     |  |  |
| • 0 :16Hz                                                             |  |  |
| • 1:33Hz                                                              |  |  |
| • 2:66Hz                                                              |  |  |
| • 3 : 131Hz                                                           |  |  |
| • 4 : 262Hz                                                           |  |  |
| Example of command: \$saf,z,4,138 <cr></cr>                           |  |  |
| Example of response: #saf,0,Z,4,43 <cr></cr>                          |  |  |
|                                                                       |  |  |
| Explanation of response:                                              |  |  |
| 1: saf = command                                                      |  |  |
| 2: Status of command execution: ref. Table 11-2                       |  |  |
| 3: ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS = 4 (256Hz)         |  |  |
| 4: CRC-8 calculation                                                  |  |  |
| igure 11-35: Specification and example of \$saf command               |  |  |
|                                                                       |  |  |




DATASHEET



#### 11.4.4 \$spf

| Purpose: Change the LP filter -3dB frequency of PPS               |  |  |
|-------------------------------------------------------------------|--|--|
| Format: \$spf, <lp filter="">,<crc><cr></cr></crc></lp>           |  |  |
|                                                                   |  |  |
| Explanation of input parameters:                                  |  |  |
| <lp filter="">: LP filter -3dB frequency. Valid entries are:</lp> |  |  |
| • 0:16Hz                                                          |  |  |
| • 1:33Hz                                                          |  |  |
| • 2:66Hz                                                          |  |  |
| • 3 : 131Hz                                                       |  |  |
| • 4 : 262Hz                                                       |  |  |
| Example of command: \$spf,4,87 <cr></cr>                          |  |  |
| Example of response: #spf,0,4,62 <cr></cr>                        |  |  |
|                                                                   |  |  |
| Explanation of response:                                          |  |  |
| 1: spf = command                                                  |  |  |
| 2: Status of command execution: ref. Table 11-2                   |  |  |
| 3: PPS LP FILTER -3dB FREQUENCY = 4 (256Hz)                       |  |  |
| 4: CRC-8 calculation                                              |  |  |



#### 11.4.5 \$sd

#### Purpose: Change the datagram format

Format: \$sd,<DatagramFormat>,<CRC><CR>

Explanation of input parameters:

<DatagramFormat>: Datagram format. Valid entries: ref. Table 10-11

- 0 : ID, rate, 8-bits counter, latency, CRC
- 1 : ID, rate, acceleration, 8-bits counter, latency, CRC
- 4 : ID, rate, temperature, 8-bits counter, latency, CRC
- 5 : ID, rate, acceleration, temperature, 8-bits counter, latency, CRC
- 8 : ID, rate, 16-bits counter, latency, CRC
- 9 : ID, rate, acceleration, 16-bits counter, latency, CRC
- a : ID, rate, temperature, 16-bits counter, latency, CRC
- b : ID, rate, acceleration, temperature, 16-bits counter, latency, CRC
- c : ID, rate, PPS, 16-bits counter, latency, CRC
- d : ID, rate, acceleration, PPS, 16-bits counter, latency, CRC
- e : ID, rate, temperature, PPS, 16-bits counter, latency, CRC
- f: ID, rate, acceleration, temperature, PPS, 16-bits counter, latency, CRC

Example of command: \$sd,1,148<CR>

Example of response: #sd,0,1,242<CR>

Explanation of response:

1: sd = command

2: Status of command execution: ref. Table 11-2

3: DATAGRAM FORMAT = 1 (ID, RATE, ACCELERATION, 8-BITS COUNTER, LATENCY)

4: CRC-8 calculation

#### Figure 11-37: Specification and example of \$sd command



DATASHEET



#### 11.4.6 \$sgu

| Purpose: Change the output unit for gyros                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Format: \$sgu, <outputunit>,<crc><cr></cr></crc></outputunit>               |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| Explanation of input parameters:                                            |  |  |  |  |  |  |  |
| <outputunit>: Output unit. Valid entries:</outputunit>                      |  |  |  |  |  |  |  |
| • 0 : Angular rate [°/s]                                                    |  |  |  |  |  |  |  |
| 1 : Incremental angle [°/sample]                                            |  |  |  |  |  |  |  |
| • 2 : Average angular rate [°/s]                                            |  |  |  |  |  |  |  |
| • 3 : Integrated angle [°]                                                  |  |  |  |  |  |  |  |
| • 8 : Angular rate – delayed [°/s]                                          |  |  |  |  |  |  |  |
| • 9 : Incremental angle – delayed [°/sample]                                |  |  |  |  |  |  |  |
| <ul> <li>a : Average angular rate – delayed [°/s]</li> </ul>                |  |  |  |  |  |  |  |
| <ul> <li>b : Integrated angle – delayed [°]</li> </ul>                      |  |  |  |  |  |  |  |
| Example of command: \$sgu,2,111 <cr></cr>                                   |  |  |  |  |  |  |  |
| Example of response: #sgu,0,2,101 <cr></cr>                                 |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| Explanation of response:                                                    |  |  |  |  |  |  |  |
| 1: sgu = command<br>2: Status of command execution: ref. Table 11-2         |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| 3: GYRO OUTPUT UNIT = [°/s] – AVERAGE ANGULAR ANGLE<br>4: CRC-8 calculation |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| Figure 11-38: Specification and example of \$sgu command                    |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| 11.4.7 \$sau                                                                |  |  |  |  |  |  |  |
| Purpose: Change the output unit for accelerometers                          |  |  |  |  |  |  |  |
| Format: \$sau, <outputunit>,<crc><cr></cr></crc></outputunit>               |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |
| Explanation of input parameters:                                            |  |  |  |  |  |  |  |
| <outputunit>: Output unit. Valid entries:</outputunit>                      |  |  |  |  |  |  |  |
|                                                                             |  |  |  |  |  |  |  |

- 0 : Acceleration [g]
- 1 : Incremental velocity [m/s/sample]
- 2 : Average acceleration [g]
- 3 : Integrated velocity [m/s]

Example of command: \$sau,1,27<CR> Example of response: #sau,0,1,150<CR>

Explanation of response:

1: sau = command

2: Status of command execution: ref. Table 11-2

3: ACCELEROMETER OUTPUT UNIT = [m/s/sample] - INCREMENTAL VELOCITY

4: CRC-8 calculation

Figure 11-39: Specification and example of \$sau command



DATASHEET

ButterflyGyro<sup>™</sup>

#### 11.4.8 \$spu

| pose: Change the output unit for PPS                          |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Format: \$spu, <outputunit>,<crc><cr></cr></crc></outputunit> |  |  |  |  |  |  |  |  |
|                                                               |  |  |  |  |  |  |  |  |
| xplanation of input parameters:                               |  |  |  |  |  |  |  |  |
| <outputunit>: Output unit. Valid entries:</outputunit>        |  |  |  |  |  |  |  |  |
| • 0 : Time since detection of 0                               |  |  |  |  |  |  |  |  |
| 1 : Time since detection of 1                                 |  |  |  |  |  |  |  |  |
| 2 : Filtered PPS                                              |  |  |  |  |  |  |  |  |
| • 3 : Filtered PPS – delayed                                  |  |  |  |  |  |  |  |  |
| xample of command: \$spu,1,75 <cr></cr>                       |  |  |  |  |  |  |  |  |
| xample of response: #spu,0,1,154 <cr></cr>                    |  |  |  |  |  |  |  |  |
| xplanation of response:                                       |  |  |  |  |  |  |  |  |
| 1: sau = command                                              |  |  |  |  |  |  |  |  |
| 2: Status of command execution: ref. Table 11-2               |  |  |  |  |  |  |  |  |
| 3: PPS OUTPUT UNIT = $[\mu s]$ – Time since detection of 1    |  |  |  |  |  |  |  |  |
| 4: CRC-8 calculation                                          |  |  |  |  |  |  |  |  |

### Figure 11-40: Specification and example of \$spu command

#### 11.4.9 \$sg

| Purpose: Change the configuration of the gyro g-compensation (ref. section 8.6.2.2.6)                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Format: \$sg, <axis>,<scalesource>, <scalefilter>,<biassource>,<biasfilter>,<lpfilter-3db>,<crc><cr></cr></crc></lpfilter-3db></biasfilter></biassource></scalefilter></scalesource></axis> |
| Explanation of input parameters:                                                                                                                                                            |
| <axis>: Specified axis. Valid entries are:</axis>                                                                                                                                           |
| • x : X-axis                                                                                                                                                                                |
| • y : Y-axis                                                                                                                                                                                |
| • z : Z-axis                                                                                                                                                                                |
| ScaleSource of the gyro scale-factor g-compensation. Valid entries:                                                                                                                         |
| <ul> <li>0 : None (=OFF)</li> </ul>                                                                                                                                                         |
| • 1 : Accelerometer                                                                                                                                                                         |
| ScaleFilter>: LP filtering of source for gyro scale-factor g-compensation. Valid entries:                                                                                                   |
| OFF     O : OFF                                                                                                                                                                             |
| • 1:0N                                                                                                                                                                                      |
| <ul> <li>BiasSource of the gyro bias g-compensation. Valid entries:</li> </ul>                                                                                                              |
| O : None (=OFF)                                                                                                                                                                             |
| <ul> <li>1 : Accelerometer</li> </ul>                                                                                                                                                       |
| <ul> <li>Acceleronited</li> <li>SiasFilter&gt;: LP filtering of source for gyro bias-factor g-compensation. Valid entries:</li> </ul>                                                       |
| OFF                                                                                                                                                                                         |
| • 1:ON                                                                                                                                                                                      |
| EXAMPLE 1 ON<br>LPFilter-3dB >: LP Filter -3dB frequency for filtering of sources for gyro g-compensation. Valid range: [0.001, 5]Hz. NB: This field must have a                            |
| number in the valid range, even if both <scalefilter> and <biasfilter> are both turned OFF</biasfilter></scalefilter>                                                                       |
| Example of command: \$sg,x,1,1,0,0,0.5,213 <cr></cr>                                                                                                                                        |
| Example of command: \$59, x, 1, 1, 0, 0, 0.5, 213 <cr><br/>Example of response: #sg,0,X,1,1,0,0,0.5,36<cr></cr></cr>                                                                        |
| Example of response. #sg,0,7,1,1,0,0,0.3,30<0K>                                                                                                                                             |
| Explanation of response:                                                                                                                                                                    |
| 1: sg = command                                                                                                                                                                             |
| 2: Status of command execution: ref. Table 11-2                                                                                                                                             |
| 3: AXIS = X                                                                                                                                                                                 |
| 4: GYRO G-COMPENSATION SCALE SOURCE = 1 (ACCELEROMETER)                                                                                                                                     |
| 5: GYRO G-COMPENSATION SCALE LP FILTER = 1 (ON)                                                                                                                                             |
| 6: GYRO G-COMPENSATION BIAS SOURCE = 0 (OFF)                                                                                                                                                |
| 7: GYRO G-COMPENSATION BIAS LP FILTER = 0 (OFF)                                                                                                                                             |
| 8: LP FILTER -3dB FREQUENCY [Hz] = 0.5                                                                                                                                                      |
| 9: CRC-8 calculation                                                                                                                                                                        |
| igure 11-41: Specification and example of \$sg command                                                                                                                                      |





### STIM320 Inertia Measurement Unit

#### 11.4.10 \$sconf

| rpose: Change system configuration parameters<br>Format: \$sconf, <systpar>,<config>,<crc><cr></cr></crc></config></systpar> |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Explanation of input parameters:                                                                                             |  |  |  |  |  |  |  |  |
| <systpar>: System parameter. Valid entry is:</systpar>                                                                       |  |  |  |  |  |  |  |  |
| • c : Sets counter restart-value and interval for CRS (ref. section 8.5)                                                     |  |  |  |  |  |  |  |  |
| <config>: Related configuration to specific system parameter. Valid entries are:</config>                                    |  |  |  |  |  |  |  |  |
| For <systpar> = c:</systpar>                                                                                                 |  |  |  |  |  |  |  |  |
| 0 : Sets counter restart-value to maximum interval [0, 65535]                                                                |  |  |  |  |  |  |  |  |
| <ul> <li>165535: Sets counter restart-value and interval for CRS, ref. Table 10-54</li> </ul>                                |  |  |  |  |  |  |  |  |
| Example of command: \$sconf,c,100,102 <cr></cr>                                                                              |  |  |  |  |  |  |  |  |
| Example of response: #sconf,C,100,156 <cr></cr>                                                                              |  |  |  |  |  |  |  |  |
| Explanation of response:                                                                                                     |  |  |  |  |  |  |  |  |
| 1: sconf = command                                                                                                           |  |  |  |  |  |  |  |  |
| 2: Status of command execution: ref. Table 11-2                                                                              |  |  |  |  |  |  |  |  |
| 3: SYSTEM PARAMETER = c (Counter restart-value and interval for CRS)                                                         |  |  |  |  |  |  |  |  |
| 4: CONFIGURATION = 100 (Counter interval [0, 99])                                                                            |  |  |  |  |  |  |  |  |
| 5: CRC-8 calculation                                                                                                         |  |  |  |  |  |  |  |  |
| gure 11-42: Specification and example of \$sconf command                                                                     |  |  |  |  |  |  |  |  |

11.5 Commands for bias trim offset General description: Various commands related to bias trim offset.

Note: Use of commands that changes parameters do not permanently store the new values. The updated values will be in effect until the part is powered off or reset. To permanently store the new values, the \$save-command (ref. section 11.3.20) must be used after having updated the required parameters.

#### Table 11-5: Available programming commands

| Command | Description                                                            | Ref. section |  |  |
|---------|------------------------------------------------------------------------|--------------|--|--|
| \$ibto  | Returns the bias trim offsets                                          | 11.5.1       |  |  |
| \$sdbto | Adjusts the bias trim offsets                                          | 11.5.2       |  |  |
| \$sbto  | Programs the bias trim offset(s)                                       | 11.5.3       |  |  |
| \$irf   | Returns the last programmed reference information for bias trim offset | 11.5.4       |  |  |
| \$srf   | Programs the reference information for bias trim offset                | 11.5.5       |  |  |

#### 11.5.1 \$ibto

Purpose: Provide information about the current bias trim offsets

Format: \$ibto, <CRC><CR> Example of command: \$ibto,160<CR> Example of response: #ibto,0.01388,-0.02425,0.01724,-0.036230,0.002872,0.015903,0.0000000,0.0000000,0.0000000,34<CR> Explanation of response: 1: ibto = command2: Status of command execution: ref. Table 11-2 3: GYRO X-AXIS BIAS TRIM OFFSET [°/s] = 0.01388 (number format: decimal number with 5 decimals) 4: GYRO Y-AXIS BIAS TRIM OFFSET [°/s] = -0.02425 (number format: decimal number with 5 decimals) 5: GYRO Z-AXIS BIAS TRIM OFFSET [°/s] = 0.01724 (number format: decimal number with 5 decimals) 6: ACCELEMETER X-AXIS BIAS TRIM OFFSET [g] = -0.036230 (number format: decimal number with 6 decimals) 7: ACCELEMETER Y-AXIS BIAS TRIM OFFSET [g] = 0.002872 (number format: decimal number with 6 decimals) 8: ACCELEMETER Z-AXIS BIAS TRIM OFFSET [g] = 0.015903 (number format: decimal number with 6 decimals) 9: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals) 10: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals) 11: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals) 12: CRC-8 calculation Figure 11-43: Specification and example of \$ibto command



DATASHEET



#### 11.5.2 \$sdbto

| Purpose: Adjust the bias trim offsets                                                                                                                         |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Format: \$sdbto, <gyro dx="">,<gyro dy="">,<gyro dz="">,<acc dx="">,<acc dy="">,<acc dz="">,0,0,0,<crc><cr></cr></crc></acc></acc></acc></gyro></gyro></gyro> |  |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Explanation of input parameters:                                                                                                                              |  |  |  |  |  |  |  |  |
| <gyro dx="">: Required adjustment in bias trim offset for gyro X-axis [°/s]</gyro>                                                                            |  |  |  |  |  |  |  |  |
| <gyro dy="">: Required adjustment in bias trim offset for gyro Y-axis [°/s]</gyro>                                                                            |  |  |  |  |  |  |  |  |
| <gyro dz="">: Required adjustment in bias trim offset for gyro Z-axis [°/s]</gyro>                                                                            |  |  |  |  |  |  |  |  |
| <acc dx="">: Required adjustment in bias trim offset for accelerometer X-axis [g]</acc>                                                                       |  |  |  |  |  |  |  |  |
| <acc dy="">: Required adjustment in bias trim offset for accelerometer Y-axis [g]</acc>                                                                       |  |  |  |  |  |  |  |  |
| <acc dz="">: Required adjustment in bias trim offset for accelerometer Z-axis [g]</acc>                                                                       |  |  |  |  |  |  |  |  |
| Example of command: \$sdbto,0.01388,-0.02425,0.01724,-0.036230,0.002872,0.015903,0,0,0,67 <cr></cr>                                                           |  |  |  |  |  |  |  |  |
| Example of response: #sdbto,0,0.02311,0.00934,-0.54432,0.089453,0.002666,-0.053422,0.0000000,0.0000000,0.0000000,67 <cr></cr>                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Explanation of response:                                                                                                                                      |  |  |  |  |  |  |  |  |
| 1: sdbto = command                                                                                                                                            |  |  |  |  |  |  |  |  |
| 2: Status of command execution: ref. Table 11-2                                                                                                               |  |  |  |  |  |  |  |  |
| 3: NEW GYRO X-AXIS BIAS TRIM OFFSET [°/s] = 0.02311 (number format: decimal number with 5 decimals)                                                           |  |  |  |  |  |  |  |  |
| 4: NEW GYRO Y-AXIS BIAS TRIM OFFSET [°/s] = 0.00934 (number format: decimal number with 5 decimals)                                                           |  |  |  |  |  |  |  |  |
| 5: NEW GYRO Z-AXIS BIAS TRIM OFFSET [°/s] = -0.54432 (number format: decimal number with 5 decimals)                                                          |  |  |  |  |  |  |  |  |
| 6: NEW ACCELEROMETER X-AXIS BIAS TRIM OFFSET [g] = 0.089453 (number format: decimal number with 6 decimals)                                                   |  |  |  |  |  |  |  |  |
| 7: NEW ACCELEROMETER Y-AXIS BIAS TRIM OFFSET [g] = 0.002666 (number format: decimal number with 6 decimals)                                                   |  |  |  |  |  |  |  |  |
| 8: NEW ACCELEROMETER Z-AXIS BIAS TRIM OFFSET [g] = -0.053422 (number format: decimal number with 6 decimals)                                                  |  |  |  |  |  |  |  |  |
| 9: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)                                                                                 |  |  |  |  |  |  |  |  |
| 10: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)                                                                                |  |  |  |  |  |  |  |  |
| 11: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)                                                                                |  |  |  |  |  |  |  |  |
| 12: CRC-8 calculation                                                                                                                                         |  |  |  |  |  |  |  |  |

Figure 11-44: Specification and example of \$sdbto command



DATASHEET



#### 11.5.3 \$sbto

| 11.3.3 \$SDIO                                                                                                          |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Purpose: Program the bias trim offset(s) Format1: \$sbto, <biastrimoffset>,<crc><cr></cr></crc></biastrimoffset>       |  |  |  |  |  |  |  |  |
| Format2: \$sbto, <biastrimoffset>,<sensorcluster>,<crc><cr></cr></crc></sensorcluster></biastrimoffset>                |  |  |  |  |  |  |  |  |
| Format3: \$sbto, <biastrimoffset>,<sensorcluster>,<axis> ,<crc><cr></cr></crc></axis></sensorcluster></biastrimoffset> |  |  |  |  |  |  |  |  |
|                                                                                                                        |  |  |  |  |  |  |  |  |
| Explanation of input parameters:                                                                                       |  |  |  |  |  |  |  |  |
| <biastrimoffset>: New value of bias trim offset [°/s] or [g]</biastrimoffset>                                          |  |  |  |  |  |  |  |  |
| <sensorcluster>: Sensor cluster to be programmed. Valid entries are:</sensorcluster>                                   |  |  |  |  |  |  |  |  |
| • g : gyro                                                                                                             |  |  |  |  |  |  |  |  |
| a : accelerometer                                                                                                      |  |  |  |  |  |  |  |  |
| <axis>: Specific axis to be programmed. Valid entries are:</axis>                                                      |  |  |  |  |  |  |  |  |
| • x : X-axis                                                                                                           |  |  |  |  |  |  |  |  |
| • y : Y-axis                                                                                                           |  |  |  |  |  |  |  |  |
| • z : Z-axis                                                                                                           |  |  |  |  |  |  |  |  |
| Example of command using format1: \$sbto,0,165 <cr> (example clears bias trim offset for all axes)</cr>                |  |  |  |  |  |  |  |  |
| Example of response using format1:                                                                                     |  |  |  |  |  |  |  |  |
| #sbto,0,0.00000,0.00000,0.000000,0.000000,0.000000                                                                     |  |  |  |  |  |  |  |  |
| Example of response using format2:<br>#sbto,0,0.02311,0.00934,0.54432,0.000000,0.000000,0.0000000,0.0000000,0.000000   |  |  |  |  |  |  |  |  |
| #sbto,0,0.02311,0.00340,0.54432,0.089453,0.002666,0.053422,0.0000000,0.0000000,0.0000000,209 <cr></cr>                 |  |  |  |  |  |  |  |  |
| Explanation of response:                                                                                               |  |  |  |  |  |  |  |  |
| 1: sbto = command                                                                                                      |  |  |  |  |  |  |  |  |
| 2: Status of command execution: ref. Table 11-2                                                                        |  |  |  |  |  |  |  |  |
| 3: NEW GYRO X-AXIS BIAS TRIM OFFSET [°/s] = 0.02311 (number format: decimal number with 5 decimals)                    |  |  |  |  |  |  |  |  |
| 4: NEW GYRO Y-AXIS BIAS TRIM OFFSET [°/s] = 0.00340 (number format: decimal number with 5 decimals)                    |  |  |  |  |  |  |  |  |
| 5: NEW GYRO Z-AXIS BIAS TRIM OFFSET [°/s] = 0.54432 (number format: decimal number with 5 decimals)                    |  |  |  |  |  |  |  |  |
| 6: NEW ACCELEROMETER X-AXIS BIAS TRIM OFFSET [g] = 0.089453 (number format: decimal number with 6 decimals)            |  |  |  |  |  |  |  |  |
| 7: NEW ACCELEROMETER Y-AXIS BIAS TRIM OFFSET [g] = 0.002666 (number format: decimal number with 6 decimals)            |  |  |  |  |  |  |  |  |
| 8: NEW ACCELEROMETER Z-AXIS BIAS TRIM OFFSET [g] = 0.053422 (number format: decimal number with 6 decimals)            |  |  |  |  |  |  |  |  |
| 9: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)                                          |  |  |  |  |  |  |  |  |
| 10: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)                                         |  |  |  |  |  |  |  |  |
| 11: FOR FUTURE USE = 0.0000000 (number format: decimal number with 7 decimals)<br>12: CRC-8 calculation                |  |  |  |  |  |  |  |  |
| igure 11-45: Specification and example of \$sbto command                                                               |  |  |  |  |  |  |  |  |



DATASHEET



#### 11.5.4 \$irf

Purpose: Provide information about last programmed reference information for bias trim offset

Format: \$irf,223<CR>

Example of command: \$irf,223<CR>

Example of response: #irf,43638,44<CR>

Explanation of response:

1: irf = command

- 2: Status of command execution: ref. Table 11-2
- 3: REFERENCE INFORMATION = 43638 (number format: unsigned integer)

4: CRC-8 calculation

Figure 11-46: Specification and example of \$irf command

#### 11.5.5 \$srf

Purpose: Program the reference info for bias trim offset Format: \$srf,<RefInfo>,<CRC><CR>

Explanation of input parameters:

<RefInfo>: Reference information (format: 32-bit unsigned integer), e.g. a date code

Example of command: \$srf,43638,122<CR> (example shows programming of datecode for "June 22, 2019" (=43638)) Example of response: #srf,0,43638,69<CR>

Explanation of response:

1: srf = command

2: Status of command execution: ref. Table 11-2

3. NEW REFERENCE INFORMATION = 43638

4: CRC-8 calculation

#### Figure 11-47: Specification and example of \$srf command

#### 12 MARKING



Figure 12-1: Example of marking of STIM320



DATASHEET



#### 13 CONFIGURATION / ORDERING INFORMATION

The STIM320 will be delivered according to the configuration code as shown below. All configuration parameters can be changed later in Service Mode, ref. section 8.6.2.3. A full list of configurable parameters can be found in Table 6-7.

Configuration parameters in **bold** letters show the standard option.

| Range                            |                    |      |                               |                                                 |                                       | Measu                 | rement                 |                             |               |                                  |                   | Output/RS422  |              |             |             |                |  |  |
|----------------------------------|--------------------|------|-------------------------------|-------------------------------------------------|---------------------------------------|-----------------------|------------------------|-----------------------------|---------------|----------------------------------|-------------------|---------------|--------------|-------------|-------------|----------------|--|--|
| Prod_ID                          |                    | - 5  | Sample<br>rate                | Filter<br>band-<br>width                        | οι                                    | Byro<br>Utput<br>Unit | Acc.<br>output<br>unit | PPS<br>output<br>unit       | Gyro<br>g-cor |                                  | - Dat             | Datagram      |              | ite -       | Termination |                |  |  |
| Range STIM320                    |                    |      |                               | Gyro output unit:                               |                                       |                       |                        |                             |               |                                  | Datagram          |               |              |             |             |                |  |  |
| Prod_ID Gyro Acc                 |                    |      | 0                             | = A                                             | ngular F                              | Rate [°/s]            |                        |                             |               | Included data                    |                   |               |              |             |             |                |  |  |
| 85042                            |                    |      |                               | 1                                               | = In                                  | crement               | al Angle [             | /sample]                    |               |                                  |                   |               |              |             |             |                |  |  |
|                                  |                    | _    |                               | 2                                               | 2 = Average Angular Rate [°/s]        |                       |                        |                             |               |                                  |                   |               |              |             |             |                |  |  |
| Range STI                        |                    |      | 1 -                           | 3                                               | 3 = Integrated Angle [°]              |                       |                        |                             |               |                                  |                   |               |              |             |             | ts)            |  |  |
| Prod_ID                          | Gy                 |      | Acc                           | 8                                               | = AI                                  | ngular R              | ate [°/s] –            | delayed                     |               |                                  |                   |               | tio          | itu         |             | (p)            |  |  |
| 85043                            | 400                | )°/s | 10g                           |                                                 |                                       |                       | al Angle ['            |                             |               |                                  |                   |               | era          | era         |             | er             |  |  |
| Comple ref                       |                    |      |                               |                                                 |                                       |                       | Angular Ra             |                             |               |                                  |                   | e,            | e            | du          | S           | nu             |  |  |
| <b>Sample rat</b><br>0 = 125 sar |                    | s/s  |                               | — <u></u>                                       | s = In                                | tegrated              | l Angle [°]            | <ul> <li>delayed</li> </ul> |               |                                  |                   | Rate          | Acceleration | Temperature | PPS         | Counter (bits) |  |  |
| 1 = 250 sar                      |                    |      |                               |                                                 |                                       | output u              |                        |                             |               |                                  | 0                 | YES           | NO           | NO          | NO          | 8              |  |  |
| 2 = 500 sar                      |                    |      |                               |                                                 |                                       | ccelerat              |                        |                             |               |                                  | 1                 | YES           | YES          | NO          | NO          | 8              |  |  |
| 3 = 1000 sa                      | 3 = 1000 samples/s |      |                               |                                                 | 1 = Incremental Velocity [m/s/sample] |                       |                        |                             |               |                                  |                   | YES           | NO           | YES         |             | 8              |  |  |
| 4 = 2000 sa                      | 4 = 2000 samples/s |      |                               | 2 = Average Acceleration [g]                    |                                       |                       |                        |                             |               |                                  | 4                 | YES           | YES          | YES         |             | 8              |  |  |
| 5 = External Trigger             |                    |      | 3 = Integrated Velocity [m/s] |                                                 |                                       |                       |                        |                             |               | 8                                | YES               | NO            | NO           | NO          | 16          |                |  |  |
|                                  |                    |      |                               | P                                               | PPS output unit:                      |                       |                        |                             |               |                                  |                   | YES           | YES          | NO          | NO          | 16             |  |  |
|                                  | Filter bandwidth:  |      |                               | $0 = \text{Time since detection of } 0 [\mu s]$ |                                       |                       |                        |                             |               |                                  | Α                 | YES           | NO           | YES         | NO          | 16             |  |  |
|                                  | 0 = 16Hz           |      |                               |                                                 | 1 = Time since detection of 1 [µs]    |                       |                        |                             |               |                                  |                   | YES           | YES          | YES         | NO          | 16             |  |  |
| 1 = 33Hz                         |                    |      |                               | 2 = Filtered PPS []                             |                                       |                       |                        |                             |               |                                  | YES               | NO            | NO           | YES         | 16          |                |  |  |
| 2 = 66Hz                         |                    |      | 3                             | 3 = Filtered PPS [] - delayed                   |                                       |                       |                        |                             |               |                                  | YES               |               | NO           | YES         | 16          |                |  |  |
| <b>4 = 262Hz</b>                 | 3 = 131Hz          |      |                               | - 0                                             | Gyro g-comp                           |                       |                        |                             |               |                                  |                   | YES           |              | YES         |             | 16             |  |  |
| 4 = 20202                        | 4 = 262HZ          |      | $\neg$                        | Bias Scale-factor                               |                                       |                       |                        | r                           | F             | YES                              | YES               | YES           | YES          | 16          |             |                |  |  |
|                                  |                    |      |                               |                                                 |                                       | Source                | 0.01Hz                 | - Sourc                     | e 0.01        |                                  | Bit-r             |               |              |             |             |                |  |  |
|                                  |                    |      |                               | fliter fliter                                   |                                       |                       |                        |                             |               |                                  | 374400 bi         |               |              |             |             |                |  |  |
|                                  |                    |      | 0                             | 1)                                              | OFF                                   | -                     | OFF                    |                             |               |                                  | 1 = 460800 bits/s |               |              |             |             |                |  |  |
|                                  |                    |      | 1                             |                                                 | OFF                                   | -                     | ACC                    |                             |               |                                  | 2 = 921600 bits/s |               |              |             |             |                |  |  |
|                                  |                    |      | 3                             |                                                 | OFF<br>ACC                            | -<br>OFF              | ACC<br>OFF             | 0                           | N             | 3 = 1843200 bits/s <sup>2)</sup> |                   |               |              |             |             |                |  |  |
|                                  |                    |      | 4                             |                                                 | ACC                                   | OFF                   | OFF                    |                             |               | $F = User-defined^{2,3)}$        |                   |               |              |             |             |                |  |  |
|                                  |                    |      | 4                             |                                                 | ACC                                   | OFF                   | ACC                    |                             | F             | Term                             | Termination       |               |              |             |             |                |  |  |
|                                  |                    |      |                               | 8                                               |                                       | ACC                   | ON                     | ACC                         |               |                                  |                   | Line Datagram |              |             |             |                |  |  |
|                                  |                    |      |                               |                                                 |                                       | ACC                   | ON                     | ACC                         |               |                                  | 0                 |               |              |             |             |                |  |  |
|                                  |                    |      |                               |                                                 |                                       |                       |                        |                             |               |                                  | 1                 | ON            |              | None        |             |                |  |  |

<sup>1)</sup> Delayed gyro output unit should be selected with this option

- <sup>2)</sup> USB-based evaluation kit works at bit-rates < 1.5Mbit/s + 2Mbit/s and 3Mbits/s
- <sup>3)</sup> Bit-rate must be specified. See section 10.5 for limitations
- <sup>4)</sup> Configuration can be changed in SERVICEMODE. See section 10.5

Example: 85042-413020-E30 has the following configuration:

- Gyro range =  $400^{\circ}$ /s, accelerometer range = 10g
- Sample rate = 2000 samples/s
- Low-pass filter bandwidth = 33Hz
- Gyro output unit = Integrated Angle [°]
- Accelerometer output unit = Acceleration [g]
- PPS output unit = Filtered PPS
- No g-/acc-compensation of bias and scale-factor
- Datagram containing Rate, Temperature and PPS
   Dit rate \_\_\_\_\_\_1040000 bits (s)
- Bit-rate = 1843200 bits/s
- Datagram Termination = None
- Line termination OFF

| RS422 data configuration |                    |  |  |  |  |  |
|--------------------------|--------------------|--|--|--|--|--|
| #Start bit               | 1                  |  |  |  |  |  |
| #Data bits               | 8                  |  |  |  |  |  |
| #Stop bits               | 1 <sup>4)</sup>    |  |  |  |  |  |
| Parity                   | None <sup>4)</sup> |  |  |  |  |  |

<CR><LF>

<CR><LF>

2

3

OFF

ON



ButterflyGyro™

STIM320 Inertia Measurement Unit

NOTES

Information furnished by Sensonor is believed to be accurate and reliable. However, no responsibility is assumed by Sensonor for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Sensonor reserves the right to make changes without further notice to any products herein. Sensonor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Sensonor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of Sensonor. Trademarks and registered trademarks are the property of their respective owners. Sensonor products for any splication in which the failure of the Sensonor product could create a situation where personal subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable legal fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Sensonor was negligent regarding the design or manufacture of the part.

#### Sensonor AS

Phone: +47 3303 5000 sales@sensonor.com www.senso

www.sensonor.com